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This is the first issue of 2008 and it 

is a very dense one with a Scientific 

contribution on computational biology, 

some announcements, reports of 

conferences and events, the MPS Chairs 

Column. Thus, the extra space is limited 

but we like to use few additional lines 

for introducing a new feature we are 

particularly happy with. Starting with 

issue 76 there will be a Discussion 

Column whose content is tightly related 

to the Scientific contribution, with 

a purpose of making every issue of 

Optima recognizable through a special 

topic. The Discussion Column will take 

the form of a comment on the Scientific 

contribution from some experts in 

the field other than the authors or 

an interview/discussion of a couple 

of experts in the area or some other 

short contribution which may reflect 

alternative points of view related to the 

special topic. 

We hope our readers will enjoy the new 

column and we strongly encourage 

feedbacks especially in terms of 

suggestions for topics to be covered in 

future issues.

Marco Locatelli
Dip. Informatica, Univ. di Torino (Italy)

Fabio Schoen
Dip. Sistemi e Informatica, Univ. di Firenze (Italy)

February 26, 2008

“Every attempt to employ mathematical methods in the study of chemical 
questions must be considered profoundly irrational and contrary to the spirit 
in chemistry. If mathematical analysis should ever hold a prominent place 
in chemistry — an aberration which is happily almost impossible — it 
would occasion a rapid and widespread degeneration of that science.”
 — Auguste Comte
     Cours de philosophie positive

“It is not yet clear whether optimization is indeed useful for biology 
— surely biology has been very useful for optimization”
  — Alberto Caprara
     private communication

1 Introduction
Many new problem domains arose from the study of biological and 
chemical systems and several mathematical programming models 
as well as algorithms have been developed. We are slightly more 
optimistic than Comte and Caprara and still believe that the use 
of mathematical programming tools can be valuable in biology, 
chemical-physics as well as in the study of innovative materials. Of 
course we perfectly agree on the fact that a lot of research stimuli 
for the optimization community originated from those fields.

In this paper we concentrate our attention on the problem of structure 
prediction: given some information on the composition of a complex 
molecule we would like to predict the structure that the molecule 
will most likely assume. Such a problem is a very relevant one as the 
properties of, e.g., biomolecules are intimately related to their three-
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dimensional conformation; it is quite 
well accepted nowadays that this most 
stable conformation corresponds to a 
global minimum of a suitable function 
which represents the free energy of the 
molecule. Given our only limited capability 
of capturing the essential phenomena 
in a manageable energetic model, and 
given the fact that various factors (e.g., 
thermodynamic and kinetic factors) concur 
to determine the actual structure, it is 
widely believed that being able to detect 
the global minimum as well as other low-
lying local minima is an important issue. 
This observation immediately leads to the 
application of global optimization: in order 
to predict the structure, first a mathematical 
model of the total potential energy, the 
energy function E, is defined, and then 
the function E is (globally) minimized. 
Defining a reasonable model E for the 
energy is in general an extremely complex 
task; many classical models include sums of 
terms which account for various interactions 
inside the molecule. In general, some terms 
are related to bonded interactions (forcing 
pairs of bonded atoms to stabilize around a 
fixed distance, the bond length, or favoring 
triplets of bonded atoms to form specific 
angles or quadruplets to find an equilibrium 
around some known dihedral angles). 
Other terms account for weaker interactions 
between non-bonded pairs; usually these 
interactions have the following form:

where term (1) represents the van der Waals 
interaction and depends on the distance Rij 
between any pair of non-bonded atoms; as 
Aij > 0 and Bij > 0, this term is composed 
of a repulsive term and an attractive one. 
Term (2) represents the Coulomb, or 
electrostatic, interaction and, again, depends 
on the pair distance Rij and on the electric 
charges qi and qj of the two atoms: as it is 
well known, atoms whose electric charges 
are opposite in sign contribute a negative 
(attractive) term to the energy, while the 

opposite is true for pairs of atoms with 
charges of the same sign. In most energy 
models, covalent bonds are considered to 
be too strong to be broken or modified 
at physiological temperatures, so the only 
degrees of freedom of complex molecules 
can be considered as those associated with 
non bonded pairs. This is the reason why in 
many applications terms (1)-(2) are the only 
ones taken into account in optimization, as 
all the other terms are assumed to contribute 
a constant term to the total energy.

Globally minimizing E turns out to be 
a very challenging task. Several discretized 
and simplified versions of the problem 
have been proven to be NP-hard (see, 
e.g., [8]). The main source of difficulty is 
not necessarily the dimensionality of the 
problem (in some cases the number of 
control variables is very small) but the huge 
number of local (and not global) minima of 
the energy function E, which rules out any 
trivial Multistart approach. Moreover, in 
some cases a single function and/or gradient 
evaluation of E may be extremely expensive.

A very deep survey on the models which 
are currently used to describe the energy of 
complex molecules can be found in [49]; 
an in–depth analysis on the characteristics 
of nanoclusters can be also found in [2]. 
We cannot close this introduction without 
citing some recent developments in the 
field of energy modeling, which we cannot 
survey here but which are of great interest 
for mathematical programming. We refer to 
approaches which, differently from classical 
ones which start “ab initio” and try to form 
models according to first principles, are 
based on the desire of finding a model for 
which the structures which are observed 
in nature are indeed global minima of the 
model, while structures obtained through 
perturbation of the observed ones are 
not. Models can be built through linear 
combination of suitable base functions; 
given the enormous amount of knowledge 
already available in protein databases, 
the parameters of these models can be 
obtained through the solution of huge linear 
programs. We do not comment any more on 
this subject, but refer the interested reader 
to [47].

In the following we will present in some 
detail the most important models for atomic 
and molecular clusters and will give a 
short introduction to the more challenging 
problems of protein docking and protein 
folding. Then, in Section 3 we will 
introduce some basic ideas underlying many 
of the global optimization approaches used 
to solve these problems.

2 Structure prediction problems
In this section we review some well 
known structure prediction problems.

2.1 Cluster optimization
In cluster optimization we are given N 
particles (atoms or molecules) and an energy 
function E, which depends on the relative 
positions of the particles in the 3D-space; we 
aim at detecting the global minimum of the 
energy function. Different energy functions 
have been proposed in the literature. Within 
the field of atomic clusters usually only non-
bonded interactions are accounted for and in 
the simplest models, particles are considered 
to be charge-free. Such potentials only 
depend on the distance Rij between pairs i, j 
of atoms, thus, for a cluster of N atoms, the 
function to be minimized is the following:

Different models only differ from each 
other for the definition of the pair potential 
function Epair. In the field of atomic 
clusters the most popular energy potential 
is the Lennard-Jones (LJ) one. The LJ 
pair potential can be defined as follows:

This potential produces very accurate 
representations of real clusters like, e.g., 
some noble gases or some metals like 
gold and nickel. But the interest of the 
LJ potential also lies in the fact that 
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it has been widely employed as a test 
system to develop and gain insight into 
new algorithmic techniques to be later 
extended to other molecular conformation 
problems. Another popular potential for 
atomic clusters is the Morse one. The 
Morse pair potential is defined as follows:

Epair(Rij) = VM(Rij ; ρ) = 
(exp{ρ(1 - Rij)} - 1)2 - 1.

The shape of this potential is quite similar 
to the LJ one, but it allows for a greater 
flexibility: a small ρ value models those 
situations where the repulsive force as 
the distance between two atoms is driven 
to 0 is a mild one, while large ρ values 
models situations where such a force is very 
strong. Also, large ρ values correspond to 
short range forces, which quickly vanish 
outside a restricted neighborhood of the 
minimum. In Figure 1 we plot both the 
LJ and a few Morse pair potentials.

Besides producing an accurate 
representation for some real clusters such 
as those of C60 molecules (ρ = 13.6) and of 
alkali metals (ρ = 3.1), the Morse potential 
also offers a more varied test system with 
respect to the LJ one. While the above 
models always assume that all atoms in the 
cluster are equal, other models have also 
been proposed for clusters where atoms of 
different types are present, in particular 
for binary clusters, i.e., clusters with two 
distinct atom types. As an example, we 
mention binary Lennard-Jones clusters ([18, 
19, 37]), i.e., clusters formed by a mixture 
of two different atom types, which can be 
modeled through

where εij and σij are suitable constants 
which depend only on the types of 
atom i and atom j. Note that from the 
optimization point of view, binary clusters 
turn out to be particularly interesting 
because they mix continuous aspects 
(atom positions) and combinatorial ones 
(atom types). Besides binary Lennard-

Jones, other potential energy model have 
been proposed in the literature like, e.g., 
the Gupta model analyzed in [43, 44].

All the above mentioned potentials 
are extremely challenging for global 
optimization methods. The number of 
local minima is conjectured to grow at 
least exponentially with the number N of 
atoms and, for Morse potential, the problem 
becomes more and more difficult as the 
parameter ρ increases because the energy 
landscape becomes more and more rugged. 
In the binary LJ clusters things are also 
complicated by the combinatorial aspects 
introduced by distinct atom types. In the 
Cambridge Cluster Database (CCDB) ([7]), 
the main database in the field of cluster 
optimization, putative global minima are 
reported for up to N ≤ 150 and for 300 ≤ N 
≤ 1000 atoms for LJ clusters; for the more 
challenging Morse clusters only results up 
to N = 80 atoms are reported; finally, for 
binary LJ clusters results for N up to 100 
and different σij values are reported.

Many other cluster optimization problems 
together with lists of their putative global 
minima are reported in the CCDB. Among 
them we recall Dzugutov clusters (see [17, 
21]) and C60 (fullerene) clusters: the latter 
are indeed molecular clusters, but C60 
molecules are extremely close to spheres and 
thus many optimization methods consider 
them just as single particles in space.

In the field of molecular clusters we 
mention water clusters, in which some water 
molecules interact; models that capture 

Figure 1: Illustration of Lennard-Jones and Morse pair potentials

the fundamental interactions among water 
molecules are based on the assumption 
that a single molecule has a prescribed 
shape which cannot be altered; the energy 
contribution is thus dependent on the 
relative positions of H and O atoms of 
different molecules. Among the best known 
models for water clusters we cite the TIP4P 
and TIP5P potentials. These molecular 
clusters are much more difficult to optimize 
with respect to atomic clusters because 
of the additional orientational degrees of 
freedom; indeed, the energy contribution of 
a pair of water molecules does not depend 
only on the distance between the geometric 
centers of the molecules, but also on the 
relative rotation of one with respect to the 
other. In other words, while the potential 
is still given as a sum of contributions (van 
der Waals and electrostatic) due to the 
relative distances between pairs of atoms, 
as each molecule is considered to be rigid, 
the “natural” degrees of freedom of each 
molecule are the position of its center and 
the rotation with respect to a prefixed 
orientation. Thus, all pairwise distances 
can be seen as functions of these degrees of 
freedom. The CCDB reports putative global 
minima for water clusters with no more 
than N = 21 molecules and, according to 
the current literature on the subject, there 
are still some doubts that the published 
structure at N = 21 (represented in Figure 2) 
is indeed the global minimum.
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Figure 2: Putative optimal custer for TIP5P21

2.2 molecular distance geometry
The three-dimensional structure of real-life 
proteins is usually determined by means 
of Nuclear Magnetic Resonance (NMR) 
and X-ray diffraction experiments. From 
these experiments we obtain a subset 
of all possible pairwise distances, from 
which we aim at finding a conformation 
of all the atoms in such a way that 
the constraints imposed by the subset 
of known distances is satisfied. More 
complex versions of this problem also 
include information about angles.

If complete information were available 
(all distances were known), the problem 
could be solved in O(N3) time (where N 
is the number of atoms) by eigenvalue 
decomposition of the distance matrix; 
however, when incomplete information on 
distances is available the problem becomes 
strongly NP-hard (see [45]).

To further complicate matters, distances 
are not usually known exactly but only 
lower and upper bounds can be retrieved 
from the experiments.

Since the introduction of the EMBED 
algorithm in [9], many different techniques 
have been proposed to solve this problem, 
including graph reduction [30], geometric 
build-up [13], Semidefinite Programming 
[4]. Global optimization techniques 
have also been proposed ( see, e.g., [36, 
51]). Indeed, the problem can be easily 
reformulated as that of globally minimizing 
the cumulative relative error

  
or, alternatively, the cumulative 
absolute error:

           
Here X1, . . . ,XN are the positions of the 

atoms, ℓij and uij are respectively the known 
lower and upper bound for the distance 
between atoms i and j, and D is the subset of 
distances for which lower and upper bounds 
are available.

2.3 Protein-protein docking 
and protein folding
Protein-protein docking is the process by 
which a large and complex biomolecule 
interacts with another one by forming a 
single complex; such complexes form the 
bases of most activities of all living bodies. 
Being able to predict the correct docking 
of two specific proteins is considered to be 
one of the most important challenges in 
computational biology for the next years. In 
rigid docking, the two interacting molecules 
are considered as rigid bodies; of course, 
this cannot be true in practice, but often 
the relative position of two proteins docked 
in this way can be used as a starting point 
for a flexible docking phase, in which both 
proteins are allowed to change their shape. 
In rigid docking we can formulate the 
problem as one of minimizing the energetic 
contribution of pairs composed of atoms 
belonging to the two different proteins 
– in fact internal contributions account for 
a constant term in the energy if the shape 
of each molecule is kept fixed. It can be 
easily understood that rigid protein docking 
is a low-dimensional global optimization 
problem: we can formulate the problem 
assuming that one of the two molecules 
is kept fixed, and thus there are only six 
degrees of freedom: three translation and 
three rotation parameters which enable 
to identify the relative position of the two 
molecules. Despite the low dimension, the 

complexity of rigid protein-protein docking 
is formidable, both because of the very 
rugged energy landscape, characterized by 
an enormous number of local optima, and 
as a consequence of the large number of 
interactions which have to be computed for 
each energy evaluation: proteins are usually 
composed of thousands of atoms and thus, 
given the relative position of two proteins, 
millions of pairwise interactions (van der 
Waals and Coulomb) have to be computed. 
As it can be easily understood, when 
relaxing the assumption of rigidity, the 
number of degrees of freedom enormously 
increases and the (flexible) docking problem 
becomes a large scale global optimization 
one. In [5] an approach is presented in 
which rigid docking is used as a tool for 
generating good starting conformations for
flexible docking. A survey of some 
global optimization approaches for 
docking can be found in [12].

Protein folding is concerned with the 
determination of the three-dimensional 
structure of a protein given the so-called 
primary structure, i.e., the aminoacid 
sequence. A protein is, in fact, composed 
of a linear set of aminoacids; it is widely 
accepted and confirmed by several 
experiments and observations that the 3D 
structure of a protein is largely determined 
by the sequence of its aminoacids. In other 
words, proteins which are composed by the 
same sequence of aminoacids are considered 
equal and all assume roughly the same 
three-dimensional shape. Being able to 
predict the conformation of a protein built 
from a specific sequence of aminoacids is 
considered as a fundamental problem in 
computational biology; if we were able to 
solve this problem, we could simulate the 
folding of many synthetic proteins until 
we find one which folds in a prescribed 
and stable shape. The literature on protein 
folding methods is enormous; here we 
just refer the reader to [11, 20, 23, 46, 48] 
for some general references and to [22] 
for an interesting example of how global 
optimization and integer programming 
can be effectively used to design a novel 
biomolecule which might lead to the design 
of a more effective treatment for specific 
diseases.
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3 Computational approaches
In this section we report some observations 
and related techniques which allowed to 
greatly increase the efficiency in solving 
some of the problems presented above.
3.1 Funnel structure
In spite of their huge number, the local 
minima of the energy functions are not 
randomly displaced. Indeed, we can group 
them into a few (not necessarily disjoint) 
large sets called funnels. If we denote a 
funnel by S, then every local minimum 
X0 ∈ S is the starting point of (at least) 
one sequence of local minima within S

X0 → X1 → … → Xk = Xfinal   Xi ∈  S ∀ i

such that ∀ i it holds that: 
• E(Xi ) > E(Xi+1), i.e., the sequence 

is monotonically decreasing;
• Xi+1 is “reachable” from Xi, which 

basically means that a small 
neighborhood of Xi has a nonempty 
intersection with the region of 
attraction of the local minimum Xi+1

All the sequences with the above properties 
within a given funnel have a common 
end point, denoted by Xfinal in (4), 
called the funnel bottom. In Figure 3 we 
report an example of a one dimensional 
function with a funnel structure.

Note that the global minimum of an 
energy function is always the funnel 
bottom of one of its funnels. Therefore, the 
problem of detecting the global minimum 
is equivalent to the problem of detecting the 
lowest funnel bottom. The key observation 
is that the number of funnels is usually 
very small compared to the number of local 
minima. The simplest instances are those 
with even a single funnel (a typical example 
is LJ55, i.e., the LJ instance with N = 55 
atoms). Hard instances are those with many 
funnels (this is typical for Morse instances 
with large ρ values) but also those with few 
funnels when the funnel whose bottom 
is the global minimum is very narrow 
(typical examples are LJ38 and LJ75). Simple 
algorithms, such as Basin Hopping and its 
variants (see [32, 50]), are able to reach quite 
efficiently a funnel bottom starting from 
a given local minimum. In the simplest 
instances with a single funnel (whose funnel 
bottom must be the global minimum) every 
run of these algorithms quickly leads to the 
global minimum, no matter which is the 
starting point, in spite of the huge number 
of local minima. In the hardest cases it may 
be necessary to run the algorithms many 
times in a Multistart fashion from different 
(usually randomly sampled) starting points 
before reaching the global minimum.

Figure 3: Illustration of a funnel

3.2 Geometric properties and 
landscape deformation
Local and global minima of the energy 
functions have particular geometrical 
structures in the 3D-space. Some approaches 
are based on conjectures about the 
geometrical structure of global minima. 
Some care is needed when making explicit 
use of such conjectures within an algorithm. 
One of the first methods to solve LJ 
instances ([38], later refined by [53]) was 
based on the conjecture that global minima 
for instances with a relatively small number 
of atoms have an icosahedral structure. Based 
on this conjecture, the search for global 
minima was carried on an icosahedral lattice. 
Though successful on many instances, the 
limit of this approach, as well as of any 
other approach making a priori assumptions 
about the structure of global minima, is its 
biasedness: it only explores a portion of the 
search space, the one containing minima 
with icosahedral structure, but is completely 
unable to detect global minima with a 
different structure. This was confirmed by 
the later discovery of new putative global 
minima with non-icosahedral structure: 
LJ38 (FCC structure, see [14, 24, 40]), 
LJ75−77,102−104 (decahedral structure, see [14, 
15]), LJ98 (a new and quite unexpected 
structure, the Leary tetrahedron, see [31]).

Another possible way to exploit 
geometrical properties comes from 
observing that global minima of LJ and 
Morse instances (no matter if they have 
icosahedral, decahedral, close-packed or 
any other structure) are compact figures 
with particular shapes related to the three 
eigenvalues of their moment-of-inertia 
ten-sor. These shapes are usually spherical 
(all eigenvalues are equal), prolate (one 
eigenvalue is larger with respect to the other 
two), or oblate (one eigenvalue is smaller 
with respect to the other two). Figure 4 
reports an example of each of these three 
shapes.
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Figure 4: Cluster shapes: (a) spherical for 
LJ98, (b) prolate for M30, (c) oblate for M61.

Based on this observation, the following 
modification of the energy function was 
introduced (see [16, 33]):
 F = E + h   (5)
i.e., F is the sum of the original 
energy function E and of a geometric 
penalization term h. For LJ and Morse 
clusters h is defined as follows

where (xi, yi, zi) are the three coordinates of 
atom i, D is a parameter underestimating 
the diameter of the cluster (largest distance 
between atoms within the cluster), and 
w1,w2 are parameters belonging to the 
interval [0, 1]. This penalization term has 
the effect of compressing the cluster favoring 
its compactness, but the compression is 
different along the three axes. The modified 
function F was employed to define two-
phase local searches: during the first 
phase a local minimum of the modified 
function F is detected; then, in the second 
phase the local minimum of F detected 
in the first phase becomes the starting 
point of a local search with the original 
energy function E. Parameters w1,w2 are 
the key ones. These are strictly related to 
the eigenvalues of the moment-of-inertia 
tensor (see [16]) and can be used to favor 
different shapes. For instance, if we want 
to favor spherical shapes we set w1 = w2 
= 1 so that the first phase of two-phase 
local searches will favor local minima with 
a spherical shape with respect to local 
minima with other shapes. Therefore, by 
appropriately selecting parameters w1 and 
w2 we can bias the search towards special 
geometrical shapes. However, while in the 
previously mentioned approaches biasedness 

is introduced by making a priori assumption 
on the structure of global minima with 
the risk of being unable to detect some 
global minima whose structure is not one 
of the a priori assumed, here we do not 
restrict to particular shapes, but, by means 
of properly chosen bias parameters w1 and 
w2, it is possible to drive the search towards 
all possible shapes. In practice it has been 
observed that two-phase local searches 
(with few choices of the parameters w1 
and w2) employed within the monotonic 
variant of Basin Hopping (see [32]) reduces 
by orders of magnitudes the effort for 
detecting the hardest (non-icosahedral) LJ 
instances (see [35]) and the very difficult 
Morse instances with ρ = 14 (see [16]).

Here we have only discussed the geometry 
of LJ and Morse instances. While the above 
discussion can be extended to other clusters, 
some cases need a special attention. For 
instance, another potential, the Dzugutov 
one (see [21]), has global minima which 
do not have compact shapes but have 
polytetrahedral structures. Of course, in this 
case the geometric penalization (6), which 
favors compact shapes, is not suitable, but it 
is possible to think about other definitions 
for h which are suitable for this potential.

Water clusters represent a particularly 
interesting case from the geometrical point 
of view because of the strong competition 
between different three-dimensional (prism, 
cage) and also bi-dimensional (book, 6-
ring) structures. Also in this case a suitable 
definition for the geometric penalization 
term h is a possible subject for future 
research.

Finally, we remark that the introduction 
of the geometric penalization term h induces 
a deformation of the energy landscape, 
which somehow “simplifies” it (in particular, 
it reduces the number of local minimizers 
and, even more important, of funnels). 
This is not the only possible way to induce 
deformations. Among others, we recall 
here the smoothing technique employed in 
[36] to solve molecular distance geometry 
problems. This is basically a deformation 
of function (3) depending on a parameter. 
For some initial value of the parameter 
the function is deformed into a convex 
one, while in the following iterations the 
parameter is progressively reduced and 
the resulting function is locally optimized 

starting from the local optimizer obtained 
in the previous iteration. In the last iteration 
the parameter is fixed to 0 and the function 
corresponds to the original one.

3.3 Population-based approaches 
and dissimilarity measures
Population-based approaches, where a 
population of clusters (basically, local 
minima of the energy function) is grown, 
have been widely employed in cluster 
optimization (see e.g. [3, 10, 28, 33, 41] 
for LJ clusters, [26, 42] for Morse clusters, 
[29] for water clusters, [25, 39, 43, 44] for 
binary clusters). Besides the usual operations 
(mutation, crossover), a key element in these 
approaches is the dissimilarity measure, 
which measures the dissimilarity between 
two given clusters. One of the limits of all 
those approaches, like Basin Hopping and 
its variants, where at each iteration a single 
cluster is kept in memory, is the fact that in 
some cases different runs of these approaches 
often converge to the same funnel bottom, 
although this might not correspond to 
the global minimum, but only to one 
which is more easily reached. Population-
based approaches are able to avoid this 
phenomenon by keeping the population 
diversified through a dissimilarity measure. 
A basic requirement for such a measure 
is to be able to recognize the equivalence 
(dissimilarity measure equal to 0) between a 
cluster and every possible result of rotations 
and/or translations of the cluster itself. In 
population-based approaches each newly 
generated cluster is compared only to similar 
clusters within the current population 
and replaces one of them if it has a lower 
energy. The choice of the dissimilarity 
measure is essential for the efficiency of the 
approach. In [33] a measure for LJ instances 
is proposed. In [26] different measures are 
tested and compared over some hard LJ 
and Morse instances and the results make 
clear the high impact of the choice of the 
measure on the efficiency of the approach. 
We also refer to [27] for an experimental 
analysis giving some insight into the results 
of the population based approach presented 
in [26]. Some measures have also been 
introduced to discriminate between different 
geometrical structures. For instance, the g 
value in [28], based on a projection of the 
cluster over a plane, is small for close-packed 
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structures, larger for decahedral structures, 
and even larger for icosahedral structures.

3.4 Direct mutation
Direct mutation is a special mutation 
operator employed in population-based 
approaches (see, e.g., [28, 41]). We discuss 
it separately because of its relevance 
especially when the number N of atoms 
increases. In spite of its importance in the 
field of cluster optimization, it has been 
observed that the performance of the Basin 
Hopping algorithm degrades as N increases. 
The main reason for this behavior is the 
mechanism to generate a new candidate 
local minimum in the neighborhood of the 
current local minimum. In Basin Hopping 
this is obtained by randomly perturbing 
all the coordinates of the current local 
minimum. This way Basin Hopping often 
quickly reaches a local minimum which 
only slightly differs from the global one, 
but then the final improvement towards the 
global minimum is a very difficult, time-
consuming step, because of the perturbation 
at each iteration of all the atoms in the 
current solution, which disrupts the whole 
structure of the solution. Therefore, the 
key to improve the performance is to find 
other more structured and less random 
(or even deterministic) moves, which are 
defined as direct mutations. Often a direct 
mutation simply removes a single atom 
from a position (typically a position where 
the atom does not give a “good enough” 
contribution to the total energy) and tries 
to place it in a new and better position. 
Direct mutation can thus be regarded as 
a “fault correction” mechanism. In [28] 
Hartke observes that if direct mutation is 
employed “the resulting overall speedup 
can be so large that it makes all the 
difference between an efficient solution and 
impractically long computation times”.

Dynamic Lattice Searching (DLS) 
[6], where only atoms with high energy 
contribution are moved over a (dynamic) 
lattice made up by their own positions plus 
all possible vacant sites, can be viewed as a 
direct mutation operator.

Finally, we include in the field of direct 
mutation operators also the combinatorial 
moves employed with binary clusters (see, 
e.g., [19]). Such moves are the swap one (if 
atoms i and j are of different types, their 

types are exchanged), and the change one 
(the type of a single atom i is changed). 
We remark that these moves are extremely 
important when dealing with binary (or, 
more generally, multi-atomic) clusters, 
because they allow to take into account the 
combinatorial nature of these problems.

4 Conclusions and further remarks
In the previous section on computational 
approaches we did not mention methods 
for protein docking and protein folding 
problems. There are several reasons for this 
omission. First, the literature on methods 
for protein conformation is so large that 
we cannot include even a short survey in 
this paper. Second, when dealing with 
proteins not only methods are different 
but, perhaps more important, models are 
widely different - it is not clear which model 
is good enough for protein prediction and 
docking; quite often structures generated 
by the minimization of an energy model 
have to be “manually” refined by expert 
biologists who have sufficient experience 
to visually analyze the shape of complex 
proteins. The difficulties associated with 
global optimization of different models, 
each one depending on suitably calibrated 
parameter sets, makes the comparison 
between algorithms quite a difficult task. 
This is the reason why in this survey we 
chose to give substantial space only to 
the treatment of cluster optimization, 
where models are well defined and widely 
accepted. We may also add that many of the 
ideas we find in the optimization of clusters 
and, in particular, the notion of “funnel 
landscape” and the methods to explore 
funnel bottoms, are commonly found in the 
literature on protein conformation. Thus, 
it seems that a good method for cluster 
optimization coupled with a good model 
for the evaluation of the free energy of a 
protein will yield a promising approach 
to solve protein conformation problems.

Although this paper was focused on 
molecular conformation problems, we are 
confident that some of the ideas presented 
here might find an application in other 
fields. As an example, let us consider 
the classical disk packing problem: 
although vaguely resembling a molecular 
conformation problem, this one is indeed 
quite different. First, it is based on 2D 
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WOSP2007
By Tom Luo, University of Minnesota 
Shuzhong Zhang, The Chinese University of Hong Kong

A first of its kind workshop on Optimization and Signal Processing 
(WOSP2007) was recently held on the campus of the Chinese 
University of Hong Kong (CUHK) during the period December 19 
- 21, 2007. With financial support from the Department of Systems 
Engineering and Engineering Management, The Shun Hing 
Institute of Advanced Engineering at CUHK, and the Huawei 
Technologies Ltd., the workshop has brought together some of 
the world’s leading experts from both signal processing and the 
optimization communities, as well as technical representatives from 
leading information technology industry. It provided a valuable 
forum for the algorithm developers and engineering practitioners to 
share research ideas and identify important topics of future research. 
In the past thirty years, the work-horse algorithms in the field 
of digital signal processing and communication have been the 
gradient descent and the least squares algorithms. While these 
algorithms have served their purpose well, they suffer from slow 
convergence and sensitivity to the algorithm initialization and 
stepsize selection, especially when applied to ill-conditioned or 
nonconvex problem formulations. This is unfortunate since many 
design and implementation problems in signal processing and 
digital communication naturally lead to nonconvex optimization 
formulations, the solution of which by the gradient descent 
algorithm usually works poorly. Moreover, some applications 
require real-time implementation in DSP chips or large scale 
deployment across a distributed network. Simply put, the need 
for efficient and robust optimization algorithms is greater than 
ever in the field of signal processing and communications. 

In recent years, the field of optimization has witnessed a 
significant surge in the research of interior point methods and 
convex conic optimization. A set of extremely powerful algorithms 
and highly reliable software packages have been developed. This 

on-going work has substantially enlarged the set of signal processing 
problems that can be reliably solved in an efficient manner. For 
the optimization community, signal processing provides a rich 
source of application problems to which the advanced optimization 
knowledge and algorithms can bring a strong and immediate 
impact. Some of the signals processing problems have led to 
significant theoretical advances in optimization. Through close 
collaboration with researchers from signal processing, optimizers 
can help recognizing and solving convex problem formulations; 
utilizing the theory of convex optimization to characterize and gain 
insight into the optimal solution structure and to derive bounds 
on performance; deriving convex relaxations of hard, non-convex 
problems; and developing powerful general purpose or application-
driven specific algorithms, including those that enable large scale 
optimization by exploiting the problem structure. 

The goal of WOSP2007 was to promote this burgeoning field of 
interdisciplinary research. This small workshop has attracted 187 
registered participants; most of them are graduate students from 
various universities of Hong Kong. This plus a delegation of 20 
technical representatives from Huawei Technologies Ltd located in 
Shenzhen, as well as many non-registered participants, created a 
large audience that easily exceeded the maximum seating capacity 
(245) of the lecture theatre. Some participants had to stand or sat 
on the floor to listen to the talks. The technical program consisted 
of tutorial lectures as well as in-depth technical presentations 
showcasing the success of applications of optimization in signal 
processing. The lecture materials, including the slides of the 
presentations, can be found in the website of the workshop: 
www.se.cuhk.edu.hk/~zhang/WOSP2007/program.html
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A Celebration of 
50 Years of Integer 
Programming
Jon Lee
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

e-mail: jonlee@us.ibm.com

The year 2008 marks the fiftieth 
anniversary of the birth of integer 
programming. Naturally, you are now 
wondering what seminal event occurred 
in 1958 that we now refer to as the birth 
of the subject. During that year, Dr. 
Ralph E. Gomory devised and published 
a short paper [26] that really set the field 
of integer programming in motion. In case 
you follow mathematical programming 
only very casually, in that paper Gomory 
described his cutting-plane algorithm for 
pure integer programs, and he announced 
that the method could be refined to give a 
finite algorithm for integer programming. 
A published proof of his finiteness result is 
contained in [32]. Gomory gave a cutting-
plane algorithm for the mixed integer 
problem [29], and this approach was only 
shown to be quite effective many years later 
[2]. It is interesting to note that now, half 
a century after they were first introduced, 
even Gomory’s finite cutting-plane method 
for the pure integer case is being re-
examined and is showing new promise [5].
To commemorate this occasion, on 7 
January 2008 a special workshop was held 
at Centre Paul Langevin, Aussois, France. 
This special workshop was part of the 12th 
Combinatorial Optimization Workshop, 
7–11 January 2008, which is held each 
year at Aussois. It is fair to say that the 
Aussois workshop is the yearly event for 
presenting and keeping up with the latest 
developments in integer programming and 
combinatorial optimization coming from 
the operations research community. In light 
of this, it was natural for the celebration of 
fifty years of integer programming to be 
staged as part of an Aussois workshop. 

Before getting into the specifics of the 
workshop, some brief words about the 
venue are in order. Centre Paul Langevin is 
located at Aussois, a small Savoyardvillage 
type ski resort in the French Alps close 
to the Italian border. It is situated in the 
Maurienne valley, at the gateway of the 
Vanoise National Park, starting from 
1500m of altitude (to 2750m high). Besides 
providing a measure of isolation, which 
helps make for a good workshop, on the 
occasion that participants need a short 
diversion from the mathematics, there are 
opportunities for skiing and snowboarding 
(a passion of the present author!).

The center has a conference room with 196 
seats, enough lodging for most participants, 
and dining facilities. The center is named 
for Paul Langevin (born 23 January 1872), 
who was a prominent French physicist. 
Besides his scientific activities, Langevin 
was a founder of the Comité de vigilance 
des intellectuels antifascistes, and he was 
also president of the Ligue des droits de 
l’homme (Human Rights League) from 
1944 to 1946. He died in Paris on 19 
December 1946, two years after living 
to see the Liberation of Paris. Langevin 
was buried at the Panthéon (in Paris). 

The organizers of the workshop were: 
Michael Jünger (Universität zu Köln), 
Thomas Liebling (École Polytechnique 
Fédérale de Lausanne), Denis Naddef 
(Ecole Nationale Supriéure d’Informatique 
et de Mathématiques Appliquées de 
Grenoble), William Pulleyblank (IBM 
Corporation), Gerhard Reinelt (Universit¨at 
Heidelberg), Giovanni Rinaldi (Istituto 
di Analisi dei Sistemi ed Informatica, 
Roma), and Laurence Wolsey (Université 
catholique de Louvain). Already one can 
see that the organizers themselves are 
leaders in the subject, providing some 
of the leading work over the course of a 
few decades, spanning such key areas as 
polyhedral combinatorics, branch and 
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Alan J. Hoffman, Harold Kuhn and Ailsa 
H. Land were also invited to be panelists, 
but unfortunately they were not able to 
attend. Susan Powell was kind enough to 
deliver some remarks on behalf of Land.

Egon Balas is University Professor of 
Industrial Administration and Applied 
Mathematics and the Thomas Lord 
Professor of Operations Research at 
Carnegie Mellon University. He was 
awarded the John von Neumann 
Theory Prize (INFORMS) in 1995. 
Some of the fundamental work of Balas 
includes implicit enumeration [35] and 
disjunctive programming [1]. Much 
more about him can be found in [20].

Michel Balinski is a Directeur de Recherche 
(émérite), CNRS, École Polytechnique, 
Paris. He was founding Editor-in-Chief of 
the journal Mathematical Programming and 
participated in founding the Mathematical 
Programming Society. Balinski was awarded 
a Lester R. Ford Award (Mathematical 
Association of America) in 1976 for his 
paper [3]. He is well known for his work 
on routing, apportionment and voting, 
and set partitioning approaches.

Jack Edmonds was a professor in the 
Department of Combinatorics and 
Optimization at the University of 

cut, matching, the TSP, lot sizing, and 
computational integer programming.

The workshop began after lunch, with 
a session, chaired by Tom Liebling, of 
invited survey talks on some themes in 
integer programming that have withstood 
the test of time. In this session, there were 
talks by Gérard Cornuéjols (“Polyhedral 
Approaches to Mixed Integer Linear 
Programming”), Bill Cook (“50+ Years of 
Combinatorial Integer Programming”), 
and Laurence Wolsey (“Decomposition and 
Reformulation in Integer Programming”).

In the early evening, George Nemhauser 
led us through the history of the first 
twenty years of integer programming, 
walking us through a list of milestone 
papers in that time period. Nemhauser 
kindly agreed to allow us to reprint that 
list here (see references [23]–[61]). Of 
course such a list is subjective and will 
inevitably suffer from some omissions, 
but all of us interested in the field would 
be well served by studying these papers. 
Further information regarding the early 
days of integer programming and associated 
topics can be found in [16] and [22].

Nemhauser took 1954 as his starting 
point, highlighting both the seminal paper 

of G.B. Dantzig, D.R. Fulkerson and S. 
Johnson [23] on cutting planes for the TSP 
and the fact that counting is hard (even 
for integer programmers). It is noteworthy 
that Gomory acknowledged in [26] the 
influence of [23] and [17] on his work:

“The algorithm closely resembles the 
procedures already used by Dantzig, 
Fulkerson and Johnson, and Markowitz 
and Manne to obtain solutions to 
discrete variable programming problems. 
Their procedure is essentially this. Given 
the linear program, first maximize the 
objective function using the simplex 
method, then examine the solution. If 
the solution is not in integers, ingenuity 
is used to formulate a new constraint 
that can be shown to be satisfied by 
the still unknown integer solution but 
not by the noninteger solution already 
attained.... What has been needed 
to transform this procedure into an 
algorithm is a systematic method for 
generating the new constraints.”

Nemhauser’s review nicely set up a panel 
session, led by Bill Pulleyblank, with six of 
the pioneers who have been so influential, 
especially during that early period. The 
panelists were: Egon Balas, Michel Balinski, 
Jack Edmonds, Arthur M. Geoffrion, 
Ralph E. Gomory and Richard M. Karp. 

Left - Right: Balinski, Gomory, Karp
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Waterloo, Ontario, from 1969. He retired 
from that position in 1999. Edmonds 
was awarded the John von Neumann 
Theory Prize (INFORMS) in 1985. 
Edmonds began his fundamental work 
at the National Bureau of Standards. 
He is particularly well known for his 
contributions to polyhedral combinatorics 
[39], branchings [44], matroids [51], 
matching [38], flows [4] and the notion 
of polynomial time [38]. For more details 
on Edmonds’ illustrious career, see [14].

Arthur M. Geoffrion is the James A. Collins 
Professor of Management Emeritus at the 
UCLA Anderson School of Management, 
Los Angeles. In 2000 he was awarded 
the George E. Kimball Medal, for service 
to INFORMS and to the profession of 
operations research. Geoffrion is well 
known for his contributions to implicit 
enumeration [45] and to decomposition 
schemes and their connections to 
Lagrangian duality [42, 55]. In 1978 
Geoffrion co-founded INSIGHT, Inc., a 
management consulting firm specializing 
in optimization-based applications in 
supply-chain management and production 
planning. In 1982 he founded what has 
become the INFORMS Roundtable.

Ralph E. Gomory is President Emeritus of 
the Sloan Foundation, which he led 1989-
2008. Before that, Gomory spent nineteeen 
years at IBM, beginning in the summer of 
1959. He was named IBM Fellow in 1964, 
Director of the Mathematical Sciences 

Department in 1965, and IBM Director 
of Research in 1970, a position which he 
held until 1986. Gomory became IBM Vice 
President in 1973 and Senior Vice President 
in 1985. In 1986 he was named IBM Senior 
Vice President for Science and Technology, 
retiring in 1989. Gomory was awarded the 
Frederick W. Lanchester Prize (INFORMS) 
in 1963, the John von Neumann Theory 
Prize (INFORMS) in 1984, and the 
National Medal of Science (by the President 
of the United States) in 1988. In addition 
to his work on cutting-plane methods and 
also corner polyhedra [10, 11, 12], Gomory 
also made fundamental contributions 
to column generation [6, 7] and to the 
concept of providing a structure that 
solves many closely related instances of an 
optimization problem [9]. Much more on 
Gomory’s career can be found in [13].

Alan J. Hoffman is a Fellow Emeritus 
of IBM Research. He has been a 
Member of the National Academy of 
Sciences since 1982 and was awarded 
the John von Neumann Theory Prize 
(INFORMS) in 1992. Hoffman has made 
fundamental contributions to the theory 
of total unimodularity [24], polyhedral 
combinatorics and our understanding of 
greedy algorithm; [18] and [21] provide 
wonderful opportunities to find out much 
more about the man and his work. 

Richard M. Karp is the Class of 1939 
Chair and University Professor at the 
University of California at Berkeley. In 

addition, he is a Research Scientist at the 
International Computer Science Institute at 
Berkeley. Karp was awarded the Frederick 
W. Lanchester Prize (INFORMS) in 
1977, the Delbert Ray Fulkerson Prize 
in (AMS and MPS) in 1979, the Turing 
Award (ACM) in 1985, the John von 
Neumann Theory Prize (INFORMS) in 
1990, and the National Medal of Science 
in 1996. Karp’s work that relates to integer 
programming includes Lagrangian duality, 
subgradient optimization and the TSP 
[49, 53], reducibility of combinatorial 
problems [56], and efficient algorithms 
for network-flow problems [4].

Harold W. Kuhn is a Professor Emeritus 
of Mathematics at Princeton University. 
He was awarded the John von Neumann 
Theory Prize (INFORMS) in 1980. 
He is particularly well known for his 
contributions to game theory and to 
nonlinear programming, and for the 
Hungarian method for the assignment 
problem [15]. More information 
about Kuhn can be found in [19].

Ailsa H. Land and Alison G. Doig proposed 
in 1957 and published in 1960 [28] what 
is considered the origin of branch and 
bound as a general technique. Land is 
Professor Emeritus of Operational Research 
at the London School of Economics.

Many of the panelists noted the strong 
support, in the early days, of the Rand 
Corporation and Princeton University. 

Left - Right: Edmonds, Karp Geoffrion Balas
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MPS Chair’s Column 
Steve Wright
17 February 2008

It’s a pleasure to contribute my second 
column to Optima and an even greater 
pleasure to see our society’s newsletter 
back on a regular production schedule. 
We are much obliged to Andrea Lodi and 
the editorial and publishing teams for 
making this happen. This issue of Optima 
contains an article by Jon Lee on the 
2008 Aussois workshop, which included a 
commemoration of the 50th anniversary 
of the publication of Ralph E. Gomory’s 
1958 paper that founded the area of integer 
programming. Jon’s article makes clear that 
integer programming remains a thriving 
field, with many of the founders remaining 
actively engaged in research alongside 
extremely talented younger generations.

I note with sadness the passing of two 
individuals who meant a great deal to 
our community. Alex Orden, who was 
Chair of MPS in 1983-86 and a founding 
council member of the society, passed 
away in Chicago on 9 February 2008. 
Alex was renowned for his work on linear 
programming, in particular, as co-author 
with Dantzig and Wolfe of the paper on 
the generalized simplex method and as the 

inventor of the product-form inverse of the 
basis matrix. Gene H. Golub of Stanford 
University died on 16 November 2007 
after a short illness. Gene was a giant of 
numerical analysis and scientific computing, 
and his research laid important foundations 
for numerical optimization. Even more 
importantly, in both his leadership capacities 
and personal life, he was a great supporter of 
the optimization community and of many 
individual optimization researchers.

I salute our former Chair Rolf Moehring, 
who celebrated his 60th birthday on 16 
February 2008. The occasion was marked 
by a symposium organized by his colleagues 
in Berlin. Rolf continues to work hard 
on behalf of MPS by heading an ad hoc 
membership committee whose charge is to 
find new ways for the society to serve its 
members and the optimization community. 
With the vast changes to the academic 
landscape brought on by electronic 
publishing, and with the increasing size and 
diversity of our own research community, 
it is time for us to step back and think hard 
about how MPS should adapt and evolve. 
Our membership stands at 1150, a record 

level, due in large part to new members who 
joined through their participation in the 
most recent ISMP and ICCOPT meetings. 
Part of our challenge is to serve these new 
members well enough that they will renew 
in future years! If you have any suggestions 
concerning services that you would like 
to see MPS provide, or new roles that we 
should be playing, please contact Rolf or 
myself. And please, if you have not already 
done so, renew your MPS membership for 
2008!

Finally, I draw your attention to 
provisions in the society’s by-laws (posted 
on our web site mathprog.org) about the 
establishment of regional and technical 
sections of MPS. If you and a group of like-
minded optimization colleagues see benefits 
in organizing yourselves, possibly with a 
view to holding regional meetings or topical 
conferences, or to establishing a web-based 
community around some interest area, feel 
free to consult with us about the possibility 
of MPS affiliation. The arrangements 
outlined in our by-laws are quite flexible. 

4
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Nominations are solicited for the George B. Dantzig Prize, administered jointly by 
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Applied Mathematics (SIAM). This prize is awarded to one or more individuals 
for original research which by its originality, breadth and depth, is having a major 
impact on the field of mathematical programming. The contribution(s) for which 
the award is made must be publicly available and may belong to any aspect of 
mathematical programming in its broadest sense. Preference will be given to 
candidates who have not reached their 50th birthday in the year of the award.

The prize will be presented at the 2009 International Symposium on Mathematical 
Programming, to be held August 23-28, 2009, in Chicago, Illinois, U.S.A. Past 
prize recipients are listed on the MPS Web site. The members of the prize committee 
are Jong-Shi Pang (Chair), Yuri Nesterov, Alexander Schrijver, and Eva Tardos.

Nominations should consist of a letter describing the nominee’s 
qualifications for the prize, and a current curriculum vitae of the 
nominee including a list of publications. They should be sent to

Jong-Shi Pang

Department of Industrial and Enterprise Systems Engineering

University of Illinois at Urbaba-Champaign

117 Transportation Building MC-238

104 S. Mathews Ave.

Urbana Illinois 61801

U.S.A.

e-mail: jspang@uiuc.edu

and received by 15 November 2008. Submission of nomination 
materials in electronic form is strongly encouraged.

Call for nomination of the 2009 
George B. Dantzig Prize in 
Mathematical Programming
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minimization. The danger of assuming a 
growth sequence (i.e. extrapolating from 
known global minima to predict those of 
larger clusters) is pointed out, but it is also 
shown that biasing can be used in a positive 
sense by modifying the energy or “penalty” 
function (deforming the landscape) to 
include a geometrical term in order to direct 
the optimization towards structures with 
a certain desired packing arrangement or 
overall shape. 

The efficiency of population-based search 
methods (such as Genetic Algorithms, and 
parallel tempering) is due to the parallel 
exploration of the configuration landscape. 
Locatelli and Shoen show that these 
methods are most successful when coupled 
with the use of dissimilarity measures, so as 
to ensure (or at least encourage) exploration 
of diverse regions of the landscape. The 
process of “direct mutation”, which involves 
more deterministic permutations, perhaps 
utilising prior knowledge about the system, 
can also be used within a population-based 
search method to move (ideally) towards 
the global minimum. The Dynamic Lattice 
Searching method (wherein high energy 
atoms in the clusters are preferentially 
moved) is one such example of this 
approach.

In conclusion, I believe that Locatelli 
and Schoen have presented a concise yet 
informative introduction to the field of 
structure prediction as an exercise in global 
optimization, along with recent techniques 
for understanding and improving the 
optimization procedure. Applications of 
many of these methods to other problems 
are already widespread and likely to grow 
considerably in the future. In their final 
section, by way of an example, the authors 
show that their approach has been very 
successfully applied to the 2-D disk packing 
problem.

Global optimization is of undoubted and 
increasing importance in most areas of 
science and engineering. The problem of 
global optimization – the determination of 
the absolute maximum or minimum of a 
function (or indeed a process) depending 
on a large number of variables – is very 
difficult, even for discrete integer-valued 
problems, let alone for continuous, real-
valued problems. Global optimization can 
be regarded as the process of searching 
a multi-dimensional landscape for the 
highest “mountain peaks” or lowest “valley 
bottoms”. While this does not present 
too many problems in the everyday 3-
dimensional world in which we live, in the 
higher dimensions (i.e. number of variables) 
commonly encountered in important 
scientific and engineering problems, the 
situation is far harder. Thus, apart from 
the cases of simple convex mathematical 
functions, or discrete problems small 
enough to be grid searched (or for which 
a branch-and-bound search tree-pruning 
algorithm can be applied), one can never 
be certain that the lowest (or highest) value 
that is found is really the global optimum. 
This is to be contrasted with the certainty 
with which we can locate and identify 
local minima and maxima, utilising (either 
analytical or numerical) gradients and 
curvatures of the function in question.

Over the past 30 years or so, many 
approaches have been developed to increase 
the likelihood of finding global optima, 
including techniques such as simulated 
annealing, Monte Carlo methods (e.g. the 
Basin Hopping approach) and the growing 
class of Evolutionary Algorithms (e.g. 
Genetic Algorithms). Of course, the “No 
free lunch theorem” ensures that while 
certain methods may be particularly good 

for certain classes of problems, no one 
approach is guaranteed to work in every 
application.

In the article “Structure prediction 
and global optimization”, Locatelli and 
Shoen describe the application of global 
optimization to several problems, taken 
from chemistry and biology, involving 
the prediction of structure: finding the 
minimum energy configuration of a cluster 
(or nanoparticle) composed of atoms or 
molecules; determining the lowest energy 
folded conformation of a model protein 
molecule; and the docking of protein 
molecules. In these cases, the inter-
atomic interactions are described by quite 
simple potential energy functions, which, 
nevertheless, reproduce essential aspects 
of the underlying physics. The difficulty 
in finding the global mimimum energy 
arises due to the high dimensionality of 
the problem (for example, the number 
of variables for an N-atom cluster is 3N, 
corresponding to the Cartesian coordinates 
of all the component atoms) and the 
consequent very high number of possible 
configurations (local minima).

As well as providing an important survey 
and bibliography of applications of global 
optimization to the cluster optimization 
problem (which they concentrate on), 
Locatelli and Shoen describe a number 
of approaches and algorithms which they 
(among others) have employed to improve 
the success rate and efficiency of global 
optimization techniques. For example, 
the recognition of funnel-like features on 
energy landscapes is used to rationalise the 
differences between certain clusters whose 
(putative) global minima are easy to find 
with those which are far more difficult to 
find. Consideration of the energy landscape 
also explains the relatively high success of 
methods, such as Basin Hopping and hybrid 
Genetic Algorithms which incorporate local *School of Chemistry, University of 

Birmingham,Edgbaston, Birmingham B15 
2tt,United Kingdom

Discussion column
Commentary on “Structure prediction and global optimization” 
by *Roy L. Johnston
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International School of mathematics 
“G. Stampacchia”

Erice - Sicily, Italy
48st Workshop: Nonsmooth Analysis, 
Optimization and Applications 
May 9 - 17, 2008 
Lecture-Hall: San Rocco

Sponsored by the:
– Italian Ministry of University 

and Scientific Research
– Sicilian Regional Government
– University of Calabria
– Centro “Enrico Fermi”
– Italian National Research Council, 

Institute of High Performance 
– Computing and Networking, 

Rende (CS)

Ettore Majorana Centre for  
Scientific Culture

PURPOSE OF tHE WORKSHOP
The need of providing satisfactory answers to several questions posed by diverse advanced 
application fields, basically in Engineering, Mechanics and Economics, has been the 
strongest motivation to tackle mathematical problems where differentiability of the involved 
functions is no longer guaranteed. Nonsmooth Analysis has then grown considerably and 
it is now a well established area of modern Mathematics. The main battlefield, where the 
theoretical findings of Nonsmooth Analysis are tested, is the design of effective algorithms 
for solving a wide range of optimisation problems. Starting from the pioneering works in 
the Sixties on the minmax problems, several application fields have benefited from the 
development of Nonsmooth Analysis. We list here the study of large scale programming 
problems via decomposition techniques, the Lagrangian relaxation of integer extremum 
problems, the numerical solution of variational inequalities, the extremum problems with 
equilibrium constraints, several classification and approximation problems, structural 
design, nonsmooth mechanics, etc. The aim of the Workshop is to bring together people 
working on both sides of Nonsmooth Analysis and Optimization and Applications to 
discuss the state-of-the-art and the possible future developments. Some tutorials will also 
be given to encourage young scientists to approach such an exciting research area. The 
Workshop is dedicated to Vladimir F. Demyanov, on the occasion of his 70th birthday.

LOCAtION
The workshop will be held in Erice, 
Sicily, Italy at the “E. Majorana” Centre 
for Scientific Culture. The Centre is 
located in the pre-mediaeval city of 
Erice and the lecture halls are located 
in two restored monasteries and the 
ancient Palazzo Ventimiglia - former 
residence of Viceroys of Sicily.

APPLICAtIONS
Persons wishing to attend the 
Workshop and possibly to contribute 
a lecture should contact:

Professor Manlio Gaudioso
D.E.I.S. - Università della Calabria
Via Pietro Bucci, Cubo 41C
87036 Rende (CS), Italy.
e-mail: gaudioso@deis.unical.it

Specifying:
1. Data and place of birth, together 

with present nationality;
2. Affiliation;
3. Address, e-mail address.

Young people with only limited experience 
should enclose a scientific curriculum 
vitae and a letter of recommendation 
from the head of their research group or 
from a senior person active in the field.
Application by e-mail is strongly 
encouraged. Closing date for application: 
March 15, 2008. Participants are 
expected to arrive in Erice on 
May 9, no later than 5 p.m.

M. Gaudioso and D. Pallaschke
Directors of the Workshop

F. Giannessi
Director of the School

A. Zichichi
Director of the Centre

tOPICS
Numerical methods for nonsmooth 
optimization
Nonsmooth optimization and integer 
programming
Nonsmooth dynamics
Nonsmooth analysis
Learning methods 
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Antonio Frangioni
Università di Pisa, I

Masao Fukushima
University of Kyoto, J

Alexei Gaivoronski
Norwegian University of Science and 
Technology, Trondheim, NO

Giorgio Giorgi
Università di Pavia, I

Angelo Guerraggio
Università dell’Insubria, I

Alexander Ioffe
Technion, Haifa, IL

H.-Th. Jongen
RWTH Aachen University, D

Alexander Kurzhanski
University of California, Berkeley, USA

Juan Enrique Martinez Legaz
Universitat Autònoma de Barcelona, E

Boris Mordukhovich
Wayne State University, USA

Massimo Pappalardo
Università di Pisa, I

Panos Pardalos
University of Florida, Gainesville, USA

J.P. Penot
University of Pau, F

R.T. Rockafellar
University of Washington, USA

Stefan Scholtes
University of Cambridge, UK

Michel Thera
Université de Limoges, F

Xiaoqi Yang
Hong Kong Polytechnic University, PRC

Minmax problems
Decomposition methods
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The workshop will consist of invited lectures 
and contributed lectures. Invited lecturers 
who have confirmed the participation are: 

Adil Bagirov
University of Ballarat, A

J.-P. Crouzeix
Université Blaise Pascal, Clermont-Ferrand, F

Asen L. Dontchev
University of Michigan, USA

Rosalind Elster
Universitat Autònoma de Barcelona, E

Francisco Facchinei
Università di Roma “La Sapienza”, I
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