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MOS Chair’s Column

September 30, 2010. Starting a new chairmanship of the Mathe-

matical Optimization Society is at the same time very motivating

and humbling. Very motivating because I believe the Society is in

an excellent position: the membership is strong and the importance

of our scientific subject is definitely growing in importance, both in

industry and academia. The role of the Society, as the main profes-

sional body of researchers in optimization and associated subjects,

thus gains in importance and visibility.

My current position as a new Chair also makes me realize how

much is due to the past officers of the Society. Under the tireless

leadership of Steve Wright, the Society has achieved much in past

years, successfully organizing (with much help from others of course)

the major conferences which are part of its mission: IPCO, ISMP and

ICCOPT. The Society has also continued to organize, for the bene-

fit of our world-wide community, the publication of its top journals

MPA, MPB and MPC as well as the Optima newsletter. Finally, Steve

has been the motor (and everything else) behind the Optimization

Online web service. In short Steve’s contribution as Chair has been

central, active, and respectful, efficient and modest at the same time.

We are all indebted to him. The past MOS Treasurer David Gay has

also been as usual helpful, dedicated and responsive self, with no

hesitation to spend his time on our behalf in such tasks as financial

accounting, legal issues and more. He obviously also deserves our

best thanks. I also wish to stress the much appreciated positive role

of Jon Lee, the past chair of the MOS Executive Committee, whose

interaction with the Council, willingness to exchange and continuous

stream of valuable proposals that have contributed greatly to the dy-

namism of the Council. On behalf of all optimizers world-wide, many

thanks to all three.

It is also a pleasure to report on the success of the last ICCOPT

and associated winter school, organized by Alejandro Jofré and his

local energetic team in Santiago, Chile, from August 24 to 29, 2010.

The many participants to this top-level meeting will surely remember

the quality of the presentations and scientific interactions, but also

the most kind hospitality of our Chilean colleagues, the lively win-

tery activity of Santiago, and the snowy Andes in the background.

Again think you dear Alejandro and colleagues for this remarkable

opportunity.

The Mathematical Optimization Society moves on, and I am

pleased to announce an important new development. After some

sleepy years, the Society Publications Committee has been rein-

stated. This Committee is chaired by Alexander Shapiro and its

members are Nick Gould, Christoph Helmberg, Jie Sun and Robert

Weismantel. Its mission, as indicated in the Society’s bylaws, includes

overseeing the publication process of our journals, improving their

effectiveness and making proposals to the Council regarding the suc-

cession of the journal’s Editors in Chief at the end of their terms.

I am very confident that this excellent group will work actively to

further promote the quality and attractiveness of the MOS publica-

tions.

Finally, let me close this column by an appeal to all. For MOS

to continue to be, as we all wish, a true and efficient support for

our research activities, it must be strong and representative of our

community. In particular, the size of membership is a clear argument

when negotiating facilities at conferences among other things. The

current membership is faring reasonably well, but my goal is to in-

crease significantly. This hope is justified because I am certain that

many more researchers (students and more senior staff) working in

our scientific domain are not yet members of our Society. I wish,

therefore, to encourage them all to join us, so we can be stronger

together to promote our field, its meetings and journals. With this

in mind, I hope that you will promote MOS membership among your

colleagues.

I wish you all a most fruitful research time and hope to meet you

soon at one of our conferences.

Alberto Caprara and Andrea Lodi

Farewell

As announced in the MOS Chair’s column of Optima 83, the current

one is the last issue for the Editorial Board of Optima in its present

form. It has been a nice journey for us over a period of four years in

which Optima was back in good place on the desk on many of our

colleagues! This would not have been possible without our co-editor

Katya Scheinberg, the enthusiasm and support of Steve Wright, the

competence and the patience of the authors of the scientific con-

tributions, the dedication of Christina Loosli and Christoph Eyrich,

former and current designers, respectively. We warmly thank all of

them. Of course, the deepest gratitude goes to the Optima readers

whose feedback has shown us we were going in the right direction.

New challenges will be faced by the new, scientifically outstand-

ing and energetic, Editorial Board of which Katya takes the lead as

new Optima editor together with Sam Burer and Volker Kaibel as

co-editors. We wish them all the best, and the same to Optima and

of course to MOS.
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Jérôme Malick, Claude Lemaréchal

The short-term electricity production

management problem at EDF

1 Introduction

Production management aims at meeting the demand of customers

at minimum cost. Since electricity cannot be stored, an electricity

producer mainly faces the permanent challenge of matching genera-

tion and demand to avoid physical failures of the production system.

This article presents how EDF (French Electricity Board) solves this

optimization problem: we sketch some issues and the resolution

scheme, and we highlight parts of the numerical optimization pro-

cess of the short term management.

From long- to short-term management

EDF manages a mix of generation units, composed of nearly 60 nu-

clear plants, 100 classical thermal plants (coal, fuel, gas, combined

cycles), and 500 hydraulic plants dispatched in 50 valleys (a hydro-

valley is a set of rivers, grouped in such a way that two different

valleys are geographically independent). The electricity generation

management at EDF consists in determining a strategy (illustrated

by Figure 1) which manages the chain of decisions.

The overall decision-making problem is highly complex and way

too difficult to be solved globally. Starting from long-term decisions

to the short-term ones, a time horizon decomposition amenable to

dynamic programming is thus used. Each horizon computes Bellman

values for stocks (reservoirs, nuclear plants, . . . ) to be used by the

shorter horizon.

On the longer-term horizons, we take into account uncertainties

by using statistical forecast models within a stochastic optimization

framework; technical constraints are drastically simplified. By con-

trast, a very fine vision of the generation mix is necessary for the

short term. Real technical constraints make the use of stochastics

prohibitive; rather, deterministic counterparts are solved.

The main decisions at each time-horizon are the following ones:

◦ On the long term (five to twenty years): to design the genera-

tion mix: planning investments, choosing the right kind of plants,

forecasting polluting emissions, . . .

◦ On the mid term (one to five years): to define the planning for nu-

clear outages (refueling and overhaul), to calculate management

strategies for the main reservoirs (hydraulic reservoirs, demand

side management, polluting emission, fuel stocks, . . . ), to buy fos-

sil fuel and to evaluate the failure risks and associated hedging

decisions.

Investment decisions

Market 
arbitrages

Nuclear maintenance
scheduling

THF, H2O 
maintenance

Daily generation plans 

Stock management 
(H2O, Nuclear, large 
combustion plants, 

etc.)

Strategy for the use 
of load-sheds and 

gas contracts

Load-shedding, 
nominations

Structuring of 
customer contracts

Long-term 
demand

Short-term
1 hour – 1 day

Long-term
20-50 years

Medium-term
1-5 years

Intra-day redeclarations

Fuel supplies

Load forecasts

System flexibilities

G = D

Control and 
management of 

market risks

Demand-side uncertainties

Supply-side uncertainties

Figure 1. The EDF generation management decision chain

◦ On the short term (a few days to a few hours): to compute pro-

duction schedules that satisfy the technical constraints and the

demand/production equilibrium, and provide marginal costs of the

system.

Aspects of short-term management

We focus here on the short-term management problem, commonly

called unit-commitment. The decision-making problem is expressed

as an optimization problem whose main characteristics are the fol-

lowing:

◦ large size (106 variables, 106 constraints): all production plants are

modeled with a large number of technical constraints and on a

48 hours horizon discretized in half-hourly time steps;

◦ nonconvex and noncontinuous nature: some production costs have

discontinuities and the production variables are discrete;

◦ strict computational limits, due to a very tense operational pro-

cess: the latest data collection phase ends at 12:30 and the feasi-

ble schedules have to be sent to the transport system operator

at 16:30. Moreover post-optimization treatments involving human

expertise are required; altogether, about 15 minutes are left for

solving the optimization problem.

This article is mainly devoted to modeling aspects of the problem:

we describe the technical characteristics of the production units in

some details, and we outline the general solution methodology. For

more details on the latter, as well as numerical results, the reader is

referred to [4].

The structure of this paper is then as follows. Section 2 presents

technical aspects of the production units (thermal and hydraulic),

and their mathematical modeling. Section 3 sketches the methods

that are used in practice to tackle the production optimization prob-

lem. Current issues and research directions are discussed in Sec-

tion 4.

2 Description of the short-term management problem

2.1 Overall optimization problem

The goal of generation management is to compute technically fea-

sible production schedules with a good supply-demand balance at a

minimal operating cost.

At a high level, this optimization problem is written as follows.

Let T be the discretized time horizon and D ∈ R
T the total pre-

dicted demand. A production unit v has a production Pv ∈ RT , an

operating cost cv , and a technical functioning domain Pv ⊂ RT . The

unit-commitment problem is

min
∑

v

cv(Pv ), s.t. Pv ∈ Pv ,
∑

v

Pv = D. (1)

The production units are thus subject to two types of constraints:

the global linking demand constraint, and local structural constraints.

These local constraints are detailed in the next two sections. Then

section 3 explains how to deal with all of these constraints when

solving problem (1).

2.2 Constraints and cost for thermal units

Technical aspects

Thermal units consist of both classical (coal, oil, gas) and nuclear

units since their operating domains are similar. We give a simplified

description in the following.

When a thermal unit is turned on, the production level must re-

main between a minimum and a maximum value, which can vary in

time. For instance, the maximum level is equal to zero during refu-

eling periods. All levels between the maximum and minimum cannot

be used, and the production levels are discrete. Moreover, produc-

tion variations must follow several rules, namely: a minimal duration
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between consecutive level changes, upper and lower bound values,

and variation prohibition for the rest of the time period after a level

decrease.

Switching on or off a thermal unit is not instantaneous. Specific

start-up and shut-down curves must be followed, as well as mini-

mum durations of shut-down. There are also some daily constraints:

the number of start-ups, shut-downs, and production level variations

are limited in a day.

The production cost of a thermal plant is composed by two parts:

a fuel cost depending on the generation level, plus some start-up

costs depending on the duration of the previous shut-down.

Mathematical formulation

Denote by P tv the production level of unit v at time step t ∈ T . Let

T on
v [T off

v ] be the set of time steps when the unit is online (that is

with P tv > 0) [offline (with P tv = 0)]. The constraints on the produc-

tion levels can be expressed as follows:

◦ Static constraints: Nv being the number of discrete generation

levels for v , and 0 < P tv = Pv,1 and P
t
v = Pv,Nv the minimal and

maximal generation levels, the static constraints are just

∀t ∈ T on
v , P tv ∈ {Pv,1, . . . , Pv,n, . . . , Pv,Nv },

where Pv,1 < · · · < Pv,n < · · · < Pv,Nv .

◦ Dynamic constraints: the three constraints on the production

variations are: the minimal duration between level variations,

if P t+1
v 6= P tv then ∀τ ∈ [t + 2; t + dmin

v ], Pτv = P
t+1
v ,

the variation prohibition after a decrease

if P t+1
v − P tv < 0 then ∀τ ∈ [t + 2;T], Pτv = P

t+1
v ,

and the bound constraints:

∆v ≤
P t+1
v − P tv
dt

≤ ∆v ,

∆v and ∆v being the minimum and maximum values, and dt the

duration of time step t.

◦ Start-up or shut-down curves constraints: A start-up [shut-down]

curve is a set of different generation levels at each time-step of the

start-up [shut-down] period:

{0 ≤ P
start,i
v ≤ Pv , i ∈ [1, dstart

v ]},

and

{0 ≤ P
stop,i
v ≤ Pv , i ∈ [1, d

stop
v ]},

where dstart
v [d

stop
v ] is the duration of start-up [shut-down]. Note

that the particular curve to follow depends on the duration of the

previous offline/online period. The constraints are then described

as follows:

◦ A plant has to follow a minimum duration for any offline period:

if P tv 6= 0 and P t+1
v = 0 then:

∀τ ∈ [t + 1; t + d
stop
v ], Pτv = 0.

◦ A plant has to follow the adequate starting-up curve when go-

ing online: if P tv = 0 and P t+1
v 6= 0 then:

∀τ ∈ [t + 1; t +dstart
v ], Pτv = P

start,τ−t
v .

◦ A plant has to follow the adequate shut-down curve when going

offline: if P tv 6= 0 and P t+1
v = 0 then:

∀τ ∈ [t + 1; t + d
stop
v ], Pτv = P

stop,τ−t
v .

◦ The aforementioned daily constraints turn out to make the prob-

lem intractable. They are therefore incorporated as penalties

pdaily in the objective function.

In view of the previous discussions, the total generation cost has

the form:

cv(Pv ) =
∑

t∈T onv

{cfixed
v,t + c

prop
v,t P

t
v +pdaily(P

t
v , P

t−1
v )} + cstart

v , (2)

where cstart
v is a start-up cost depending on the previous offline pe-

riod.

2.3 Constraints and cost for hydraulic units

Technical aspects

A hydro-plant consists of a set of turbines that discharge water from

its upstream reservoir into its downstream one. The reverse is also

possible for some plants equipped with pumping units: pumping up

water at low demand hours allows one to re-use the water at higher

demand ones. Unlike thermal or nuclear units, the production of a

hydro-plant is not computed individually. It is rather optimized in a

more global entity, a hydro-valley, that depicts the interaction be-

tween a set of hydro-plants and the reservoirs connecting them.

The power delivered by a hydro-plant can take only a finite num-

ber of values (designated in what follows as discrete production

points). These values correspond to the power produced by its

turbines that are switched on successively. Since the time period

is short, the considered turbines’ rates are fixed, just because the

water level in the upstream reservoir is considered as constant.

The production of a hydro-valley is subject to a set of constraints

that deal with technical functioning aspects, aimed at preventing a

fast degradation of the units or simply at following some external

regulations. Of course, in addition to the flows induced by pumping

or turbining, a reservoir is subject to outer water inputs due to rain,

snow or spillage. Hence, through the time period, the volume of a

reservoir is governed by an equilibrium flow constraint that rules

these factors.

As for the power plants, their production variations are subject

to upper and lower bound constraints. A minimal delay of one hour

is also imposed between two production variations of opposite na-

ture. Furthermore, when two reservoirs are connected with both

turbining and pumping plants, simultaneous pumping and turbining

is forbidden, and a minimal halt of thirty minutes before switching

from pumping into turbining (and vice versa) is imposed.

Mathematical formulation

Given a hydro-valley v , we denote by U its set of production plants

and by R its reservoirs. Each plant u ∈ U is described by a set of

turbining/pumping units G(u). Each unit is characterized by its flow

capacity Fu,g and its power rate ρu,g ; units are ranked according to

decreasing ρ’s. At time step t, the state of unit g is given by a binary

variable etu,g ∈ {0,1} so that we have

F tu =
∑

g∈G(u)

etu,gFu,g , (the flow capacity of u)

P tu =
∑

g∈G(u)

etu,gρu,gFu,g (the power of u).

For all u, the binary variables must follow a sequence constraint:

∀t, ∀g ∈ G(u), etu,g+1 ≤ etu,g,

to have P tu equal to a discrete production point at each time step t.

Note that it is then sufficient to apply the pumping/turbining techni-

cal constraints for g = 1 only.
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Denote by uT and uP the turbining and pumping plants respec-

tively. The constraints

∀t, etuT ,1 + e
t
uP ,1

≤ 1

prohibit simultaneous pumping and turbining, while the minimal halt

delay before a flow mode switch can be imposed by:

∀t ∈ [1, T − 1], etuP ,1 + e
t+1
uT ,1

≤ 1, et+1
uP ,1

+ etuT ,1 ≤ 1.

The production variation constraints are expressed as:

∀t ∈ [2, T − 1], ∀g ∈ G(u), −1 ≤ etu,g − e
t−1
u,g − e

t+1
u,g ≤ 0,

for the minimal delay between production variations, and

∀t ∈ [1, T − 1], δu ≤
∑

g∈G(u)

(et+1
u,g − e

t
u,g)Fu,g ≤ δu

for the bound constraints, δu and δu being the lower and upper

bounds respectively.

Denote by V tr the volume of reservoir r ∈ R at time step t. The

flow constraint has the following form:

V tr = V
t−1
r +

∑

u∈N↑(r)

F
t−d(u,r)
u −

∑

u∈N↓(r)

F
t+d(r ,u)
u + Itr ,

where N↑(r) [N↓(r)] is the set of hydro-plants up [down] reser-

voir r , Itr is the outer water input, and d(u, r) is the travel time of

water between reservoir r and plant u and vice versa. Note finally

that the volume is also subject to bound constraints (resulting from

the hydraulicity, environment, or regulations due to the recreational

use of the reservoir).

The production cost of a hydro-valley is the global water loss

through the time horizon:

cv(Pv ) =
∑

r∈R

ωr (V
0
r − V

T
r ).

The value ωr of water of reservoir r is estimated with marginal in-

dicators resulting from mid-term models, giving the future gain if the

water is not discharged (remember Figure 1).

3 Optimization methods

3.1 Solving the overall problem via decomposition

In our overall optimization problem (1), v indices the thermal plants

of Section 2.1 and the hydro-valleys of Section 2.2. Then we see that

each Pv depends on no other Pv′ , and that the balance constraint∑
v Pv = D is the only link between the “local agents” Pv . The

problem is thus clearly decomposable and, as already seen in [1],

Lagrangian relaxation is an attractive approach. Thus, for given dual

variable λ ∈ RT , (1) is replaced by the decomposed problem

θ(λ) := min
Pv∈Pv

∑

v

cv(Pv )+ λ ·
(
D −

∑

v

Pv

)

= λ ·D +
∑

v

min
Pv∈Pv

(
cv(Pv )− λ · Pv

) (3)

and the issue becomes that of finding an adequate λ, so as to re-

produce a solution of (1). To this end, duality theory (see, e.g.,

[6, 8, 5, 9]) tells us that:

(i) If an optimal solution P(λ) of (3) is feasible in (1), then it is also

optimal in (1).

(ii) To achieve this, λ must maximize the dual function θ of (3).

(iii) This function is concave, D−
∑
v Pv(λ) ∈ R

T being a subgradi-

ent (of −θ at λ).

(iv) However, the converse in (ii) is false: finding a λ̂ maximizing

θ does not necessarily yield a primal optimal P(λ̂). Usually,∑
v Pv(λ) ≠ D for any λ ∈ RT , even for λ = λ̂.

(v) Nevertheless, the dual problem (ii) does provide a certain pri-

mal point P̂ = {P̂v}v which solves a certain convexified form of

(1); the P̂v ’s need not lie in Pv but
∑
v P̂v = D.

(vi) Besides, a dual optimum λ̂ gives the marginal cost of the link-

ing constraints
∑
v Pv = D, associated with the convexification

alluded to in (v).

Accordingly, a two-phase strategy is adopted.

◦ Phase I – maximizing θ(λ)θ(λ)θ(λ). Property (iii) makes (ii) possible and

common approaches use the popular subgradient algorithm. In-

stead, the present operational software uses the bundle algo-

rithm of [10], which in turn uses a quadratic solver written by

K. C. Kiwiel. A first advantage is robustness: a reliable dual opti-

mum λ̂ is computed which, according to (vi), provides useful in-

formation on the marginal prices of the demand D in (1). Besides,

a primal point P̂ as described in (v) is also obtained. We will see

in the forthcoming sections that hydraulic valleys cannot always

be optimized exactly; this results in a noisy θ, which is handled by

the technique of [7].

◦ Phase II – producing schedules. Because of (iv), solving the dual

problem as above can only be viewed as a first step toward solving

(1). It is therefore followed by a second phase, aimed at comput-

ing schedules that do lie in Pv , while realizing a good compromise

between minimizing the cost and satisfying the balance equation.

The method currently used is based on augmented Lagrangian [3]

where a quadratic stabilization term is added to the dual function.

Since the quadratic term destroys the decomposability property,

a “partial linearization” as in [2] is applied. Altogether the local

problems of (3) are replaced by

min
Pv∈Pv

(
cv(Pv )− λ · Pv + r |Pv −Qv |

2
)

(4)

where the “stability center” Qv is just the previous iterate Pk−1
v

(thus an initialization P0 is required).

In order to assess schedules satisfying all technical constraints of

Section 2, while not matching the linking constraints, a “total cost”

C(P) :=
∑

v

cv(Pv)+π
(
D −

∑

v

Pv
)

(5)

is introduced, where π penalizes the balance mismatch. Conver-

gence of the model is measured as the gap between the value θ(λ̂)

of the dual function computed in Phase I and the total cost of the

primal solution obtained in Phase II (from weak duality, this gap gives

a bound for the optimal cost C).

3.2 Solving the sub-problems

Thermal units

A standard MIP formulation would be quite complex and require

considerably high computational time to obtain a satisfactory solu-

tion. A specific dynamic programming approach has been developed

to solve the thermal sub-problems, which can be outlined as follows.

A four-dimensional state {S1, S2, S3, S4} is defined: S1 represents

the online/offline state (S1 = 1 if the plant is online, S1 = 0 if not),

S2 = Pv is the discrete production level, S3 represents the sign of

the last production variation (S3 = 1 for an increase, 0 otherwise),

S2 = dv represents the duration of the current online/offline period.

At each time step t, the set of authorized states is calculated taking

into account all the production constraints (limits on the production

levels, halts . . . ). Authorized transitions between states at different

timesteps are then computed taking into account the timing con-

straints (minimum durations, start-up curves . . . ).
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Costs associated to each transition are then calculated: a transi-

tion to an offline state costs 0; a transition to a generation state is

associated to the cost

cfixed
v,t + c

prop
v,t P

t
v + pdaily(P

t
v , P

t−1
v )− λtP

t
v

in the Lagrangian (2) (3); a transition to a start-up curve is associated

to the sum of the generation cost and the start-up cost.

Dynamic programming is then applied, calculating backward the

Bellman value of each state. The graph is a set of nodes and a set

of transitions between nodes. Call Tri the set of transitions going to

node i; then

Vbvi = min
tr∈Tri

[C(tr)+ Vbv
tr−1(i)

]

is the Bellman value of node i, where tr−1(i) is the node connected

to node i by transition tr, C(tr) is the cost associated to transi-

tion tr.

Hydro-valleys

The hydraulic sub-problems, modeled as MIP’s described in Sec-

tion 2.2, cannot be solved to optimality in a reasonable computing

time. This is the reason why three versions of the model are at

stake:

(a) the actual implementation currently in operation uses a continu-

ous relaxation; combinatorial constraints are taken into account

only in Phase II with the help of various heuristics;

(b) a forthcoming version will keep the continuous relaxation in

Phase I only, while Phase II will solve inaccurately the actual

model 2.2;

(c) a third version is planned, where inaccurate solutions of the ac-

tual model will be computed in both phases.

Effort is currently focused on version (b); Section 4 will explain

why version (c) has been postponed so far.

3.3 Numerical illustration

Let us illustrate the behaviour of the forthcoming version b) above.

The code is distributed and runs on a cluster of 32 processors. It

performs around 500 total iterations for each phase. An iteration

takes about 0.1 seconds for Phase I, and 1.5 seconds for Phase II

(remember that Phase I solves “easy” hydraulic subproblems). The

total computational time of one run is therefore around 900 sec-

onds.

On average over one year, Phase I optimizes θ within 0.1 % and

produces a convexified P̂ satisfying the balance constraint within

0.1 % as well. Phase II produces a schedule P̄ , whose total cost C(P̄)

is optimal within 1.3 %.

Two figures below give an idea of the progression of the algorithm,

for both phases. The evolution of the dual function (3) through

Phase I is depicted in Figure 2. As for Phase II, Figure 3 displays

two curves: the balance mismatch |
∑
Pv − D| (averaged over the

time period [0, T ]), and the total cost of (5). Both figures use a log-

arithmic scale; for industrial privacy, all values have been normalized

as follows:

for n = 1, . . . ,N, an → ân =
an − a

a1 − a
, with a =min(an).

Good convergence behavior is sometimes difficult to achieve (es-

pecially in Phase II). For instance, we can remark in Figure 3 that the

best solution was found at iteration 414 (â414 = 0), and the method

carried on for almost 100 additional iterations without being able to

improve it.

0 50 100 150 200 250 300 350 400 450 500

iterations

Dual function

Figure 2. Evolution of the (normalized) dual function along the iterations

0 50 100 150 200 250 300 350 400 450 500

iterations

Total production cost

Balance mismatch

Figure 3. Evolution of the (normalized) balance mismatch and total production

cost

4 Perspectives

Including all possible real-life constraints of an electricity production

management problem is pure dream (remember the human postpro-

cessing mentioned in Section 1). The model is therefore regularly

improved, in order to better reflect reality and to achieve better

numerical performances.

For instance, Phase I of the actual implementation (a) “sees” a

less constrained hydraulic model; implementing version (c) should

be desirable. However, it turns out that inserting the true model in

Phase I results in chaotic λ̂. This undesired behaviour might be due

to stiff hydraulic constraints (which impacts the balance constraints),

or to inaccurate computations of the dual function (3). Further anal-

ysis is needed to fix this question; an important question because

Phase I not only initializes Phase II but also provides marginal indica-

tors about costs of the demand (λ̂ mentioned in (vi) of Section 3.1).

Another point concerns Phase II, which uses a local search

method strongly dependent on the initial point. Moreover the al-

gorithm does not have guaranteed convergence properties on this
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nonconvex problem. Alternative methods are worth investigating to

improve this phase.
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Discussion Column

Antonio Frangioni

Unit Commitment problems: A tale in

Lagrangian optimization

The paper provides an account of the current status of a multi-luster

collaboration between academia and industry about the application

of Lagrangian techniques for the solution of Unit Commitment (UC)

problems in electrical power production.

UC problems have played an important role, perhaps as significant

as that of multicommodity flows, to popularize solution techniques

based on Lagrangian relaxation both in the mathematical program-

ming community and within practitioners (in particular, in this case

in the electrical engineering community). This is due to a number of

factors:

◦ UC is indeed a large-scale problem with both nonlinear and dis-

crete components. As such, it has been until recently firmly out

of reach of solution techniques based on general-purpose mixed-

integer solvers, and specialized approaches have been a neces-

sity. However, single-unit scheduling problems, both for thermal

and hydro units, are relatively easy to solve with appropriate

approaches (typically dynamic programming and flow/linear pro-

gramming techniques).

◦ As a consequence, UC, at least in some of its “easiest” versions, is

incredibly well-suited for the technique. Lower bounds obtained

by Lagrangian relaxation can have a ludicrously small inherent gap,

as low as a small fraction of a percentage point, especially for

the largest hydro-thermal instances that used to be the norm in

several relevant application environments (and still are in that de-

scribed in the Scientific Contribution). Each Lagrangian iteration

is quite fast, which coupled with a good method to update the

multipliers produces these terrific bounds quickly enough.

◦ UC has really tight operational constraints, making the develop-

ment of methods capable of quickly and reliably producing good-

quality solution of utmost importance.

◦ UC is, or at least used to be, the almost perfect example of an

“easy sell” for advanced applied research. The problem is huge in

terms of costs involved and has to be solved daily, thus small sav-

ings rapidly add up to incredibly vast sums. Optimizing the sched-

ules of production units has no noticeable negative effect, and

therefore no meaningful opposition by any of the parties involved.

The problem used to be of concern of a single monopolistic pro-

ducer – often state-owned – with almost unlimited financial re-

sources.

This is not to say that UC is an easy problem. Indeed, successful ap-

plication of Lagrangian techniques to UC (as well as to other difficult

combinatorial problems) requires several nontrivial steps which have

motivated relevant theoretical contributions, to which the authors

of the Scientific Contribution are by no means unconnected:

◦ algorithmic recovery [7] of the continuous solutions of the “pri-

mal counterpart” of the Lagrangian Dual [8];

◦ fast converging bundle methods using techniques like disaggrega-

tion in the master problem and preconditioning [2];

◦ general yet efficient approaches for recovering primal feasible so-

lutions out of a Lagrangian dual [3], comprised an entire new class

of Lagrangian-based heuristics [6].

All this illustrates a very nice instance of a central credence (hope?

wishful thinking?) in the mathematical programming community, and

in applied mathematics in general: important practical problems mo-

tivate relevant theoretical developments, sophisticated mathematical

theory is necessary to solve crucial practical applications.

Research on UC problems is by no means over, due to several

factors:

◦ Most countries in the world have been transitioning from elec-

trical systems based on monopolistic producers to those based

on free market, where competition between producers and con-

sumers (regulated by a central authority, typically taking care of

the electrical network) is supposed to increase the overall ef-

ficiency. In this setting, the UC problem takes different forms

for different actors, sometimes complicating matters consider-

ably (most of the system is in the hand of other decision makers,

whose behavior is unknown), sometimes simplifying them some-

what (each decision maker needs to model only his units, which

are a subset of the whole system, and the effects of the constraints

on the transmission network is somewhat less pronounced).

◦ It is possible (perhaps desirable) that the future will bring very rel-

evant changes in the characteristics of the generating units. Other

than several hundreds of large and relatively reliable plants, many

thousands of smaller and less reliable units based on renewables

– or even much more with fuel cells cars in the envisaged hydro-

gen economy – may have to be taken into account. Distribution

grids may also undergo substantial updates to the so-called “smart

grids”. All this may clearly have very profound impacts on the UC

models to be solved.
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◦ From the mathematical programming viewpoint, two somewhat

opposite phenomena are manifesting themselves. On the one

hand, the continuous push to represent more and more closely

the reality of producing plants (valve points and startup ramps [1]

in thermal units, nonlinear power-to-discharged-water relation-

ships [4], forbidden operating zones and pumping in hydro units

[5], . . . ) in the mathematical model contributes to keep the prob-

lem rather difficult to solve, and therefore justifies the develop-

ment of specialized approaches. On the other hand, the impres-

sive rise of solution power of general-purpose MILP and MINLP

solvers renders Lagrangian approaches less competitive, and at

least not necessarily the unique choice as they used to be [9], es-

pecially considering the superior flexibility of methods based on

general-purpose tools.

Thus, UC (in its varied forms) is likely to remain an important prob-

lem in practice for the foreseeable future, and a fine and worthy

playground for the mathematical programming community.

This discussion column would not be complete, however, without

mentioning how important the last author of the Scientific Contribu-

tion has been in obtaining many of the above theoretical results, and

fostering their practical application in his own country and in many

others. Not content of helping shaping generations of researchers

in convex analysis and applied mathematical programming with his

deep and broad theoretical contributions, his restless pursuit of clar-

ity of presentation and higher educational value in his writings, and

his profound humanity, he has also substantially contributed to sav-

ing his own and many others countless millions in power generat-

ing costs and the corresponding CO2 emissions. I think many of

us would be very happy to have even a fraction of the impact that

Claude Lemaréchal has had on his community.
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ZIB Optimization Suite 2.0 released
The suite contains new versions of the constraint integer program-

ming framework SCIP, the LP solver library SoPlex, and the mod-

elling language ZIMPL. The package can solve LPs, MIPs and non-

convex MIQCPs out-of-the-box. At its core lies SCIP, a hybrid solver

which integrates techniques from Integer Programming, Constraint

Programming, and Satisfiability Testing. It supports automated con-

flict analysis/no-good learning and global constraints while retaining

the full strength of MIP solving.

Due to its plugin-based design SCIP can be used standalone or as a

very flexible branch-cut-and-price framework. New features of ver-

sion 2.0 include full support for MIQCP, both in the solver and the

modelling language. First global CP constraints, new primal heuris-

tics and separators have been implemented and the LP preprocessing

and solver interfaces have been improved. A couple of new examples

have been added to the distribution.

The complete source code and precompiled binaries can be

downloaded for academic use at http://zibopt.zib.de.

VII ALIO/EURO

Workshop on Applied Combinatorial Optimization

Porto, Portugal, May 4–6, 2011

The main purpose of the ALIO/EURO Conferences of Combinato-

rial Optimization is to bring together Latin American and European

researchers and to stimulate activities and discussions about meth-

ods and applications in the field of combinatorial optimization. Re-

searchers from other countries are obviously welcome too. Previous

editions of ALIO-EURO were held in: Rio de Janeiro, Brazil (1989),

Valparaiso, Chile (1996), Erice, Italy (1999), Pucon, Chile (2002),

Paris, France (2005), and Buenos Aires, Argentina (2008). In this

meeting contributions dealing with any aspect of Applied Combina-

torial Optimization are welcomed. This includes theoretical achieve-

ments, algorithms development and real-world implementations.

Confirmed invited Speakers: Rolf Möhring, Débora P. Ronconi,

Andrea Lodi, and Miguel Constantino.

This classic book is an introduction to dynamic programming, 
presented by the scientist who coined the term and developed 
the theory in its early stages. In Dynamic Programming, 
Richard Bellman introduces his groundbreaking theory 
and furnishes a new and versatile mathematical tool for the 
treatment of many complex problems, both within and outside 
of the discipline.
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IPCO 2011

The 15th Conference on Integer Programming and Combinatorial Optimization
Announcement and call for papers

IPCO XV will be held on June 15–17, 2011 at the IBM T. J. Watson

Research Center in Yorktown Heights, New York, USA.

Authors are invited to submit extended abstracts of their recent

work by November 15, 2010. Submission details and other infor-

mation can be found at: http://ipco2011.uai.cl

The IPCO conference is under the auspices of the Mathematical

Optimization Society (formerly known as the Mathematical Pro-

gramming Society). It is held every year, except for those years

in which the “International Symposium on Mathematical Program-

ming” takes place. The conference is a forum for researchers and

practitioners working on various aspects of integer programming

and combinatorial optimization. The aim is to present recent devel-

opments in theory, computation, and applications in these areas.

Program committee: Nikhil Bansal (IBM), Michele Conforti (Padova),

Bertrand Guenn (Waterloo), Oktay Günlük (IBM), Tibor Jordán

(ELTE Budapest), Jochen Koenemann (Waterloo), Andrea Lodi

(Bologna), Franz Rendl (Klagenfurt), Giovanni Rinaldi (Roma), Gün-

ter Rote (FU Berlin), Cliff Stein (Columbia), Frank Vallentin (Delft),

Jens Vygen (Bonn), Gerhard Woeginger (Eindhoven, chair).

Organizing committee: Sanjeeb Dash, Oktay Günlük (chair), Jon Lee,

Maxim Sviridenko.

Important dates:

Abstract submission: November 15, 2010

Notification: January 31, 2011

Conference: June 15–17, 2011
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