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The Mathematical Programming Society will publish the 
new journal Mathematical Programming Computation (MPC) 
beginning in 2009. The journal is devoted to computational issues 
in mathematical programming, including innovative software, 
comparative tests, modeling environments, libraries of data, and/or 
applications. A main feature of the journal is the inclusion of 
accompanying software and data with submitted manuscripts. The 
journal’s review process includes the evaluation and testing of the 
accompanying software. Where possible, the review will aim for 
verification of reported computational results.

1 Background
In January 2007, Martin Grötschel proposed that MPS consider 
the creation of a computationally-oriented journal. The proposal 
was described in an email to Rolf Möhring. The following quote 
from the email provides a good summary of the intention of the 
proposal. 

They see a weakness in our journal landscape concerning 
information about good codes, the distribution of codes themselves, 
of data and data collections and everything that has to do with 
computational aspects of this kind.

Rolf Möhring formed a committee to explore the idea of a new 
journal, with members Robert Bixby, William Cook (Chair), 
Thorsten Koch, Sven Leyffer, David Shmoys, and Stephen Wright. 
Email discussions were carried out between April 2007 and 
June 2007, and a short report was sent to Rolf Möhring to wrap 
up the committee’s work. The consensus of the committee was 

continues on page 7
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How to advance in Structural Convex 
Optimization
Yurii Nesterov
October, 2008 Abstract

In this paper we are trying to analyze the 
common features of the recent advances 
in Structural Convex Optimization: 
polynomial-time interior-point methods, 
smoothing technique, minimization in 
relative scale, and minimization of composite 
functions.

Keywords convex optimization · non-
smooth optimization · complexity theory 
· black-box model · optimal methods 
· structural optimization · smoothing 
technique.

Mathematics Subject Classification (2000) 
90C06 · 90C22 · 90C25 · 90C60.

Convex Optimization is one of the rare 
fields of Numerical Analysis, which benefit 
from existence of well-developed complexity 
theories. In our domain, this theory was 
created in the middle of the seventies in 
a series of papers by A.Nemirovsky and 
D.Yudin (see [8] for full exposition). It 
consists of three parts:
– Classification and description of problem 

instances.
– Lower complexity bounds.
– Optimal methods.

In [8], the complexity of a convex 
optimization problem was linked with its 
level of smoothness introduced by Hölder 
conditions on the first derivatives of 
functional components. It was assumed 
that the only information the optimization 
methods can learn about the particular 
problem instance is the values and derivatives 
of these components at some test points. 
This data can be reported by a special unit 

called oracle, and it is local, which means 
that it is not changing if the function is 
modified far enough from the test point. 
This model of interaction between the 
optimization scheme and the problem data 
is called the local Black Box. At the time of 
its development, this concept fitted very 
well the existing computational practice, 
where the interface between the general 
optimization packages and the problem 
data was established by Fortran subroutines 
created independently by the users.

Black-Box framework allows to speak 
about the lower performance bounds 
for diffierent problem classes in terms of 
informational complexity. That is the lower 
estimate for the number of calls of oracle 
which is necessary for any optimization 
method in order to guarantee delivering an 
ε-solution to any problem from the problem 
class. In this performance measure we do 
not include at all the complexity of auxiliary 
computations of the scheme. 

Let us present these bounds for the most 
important classes of optimization problems 
posed in the form

	 min f(x),			  (1)
	 x∈Q

where Q ⊆ Rn is a bounded closed convex 
set (⎢⎢x⎜⎜ ≤ R, x ∈ Q), and function f is 
convex on Q. In the table below, the first 
column indicates the problem class, the 
second one gives an upper bound for 
allowed number of calls of the oracle in 
the optimization scheme1, and the last 
column gives the lower bound for analytical 
complexity of the problem class, which 
depends on the absolute accuracy ε and the 
class parameters.

This paper was written during the visit of the author at IFOR (ETH, Zurich). The author expresses his 
gratitude to the Scientific Director of this center Hans-Jacob Lüthi for his support and excellent working 
conditions.
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(2)
It is important that these bounds are exact. 
This means that there exist methods, which 
have efficiency estimates on corresponding 
problem classes proportional to the lower 
bounds. The corresponding optimal methods 
were developed in [8,9,19,22,23]. For 
further references, we present a simplified 
version of the optimal method [9] as applied 
to the problem (1) with f ∈ C2:

2

Choose a starting point y0 ∈ Q and set  
x−1 = y0. For k ≥ 0 iterate:

         (3)

	      
As we see, the complexity of each iteration 
of this scheme is comparable with that of the 
simplest gradient method. However, the rate 
of convergence of method (3) is much faster.

After a certain period of time, it became 
clear that, despite its mathematical 
excellence, Complexity Theory of Convex 
Optimization has a hidden drawback. 
Indeed, in order to apply convex 
optimization methods, we need to be 
sure that functional components of our 
problem are convex. However, we can check 
convexity only by analyzing the structure of 
these functions:3 If our function is obtained 
from the basic convex functions by convex 
operations (summation, maximum, etc.), we 
conclude that it is convex. If not, then we 
have to apply general optimization methods 
which usually do not have theoretical 
guarantees for the global performance.

Thus, the functional components of 
the problem are not in the black box the 
moment we check their convexity and 
choose minimization scheme. However, we 
1 If this upper bound is smaller than O(n), then the dimension of the problem is really very big, and we 
cannot afford the method to perform this amount of calls.
2 In method (11)-(13) from [9], we can set ak = 1 + k/2 since in the proof we need only to ensure  
a2

k+1 – a2
k ≤ ak+1.

3 Numerical verification of convexity is an extremely difficult problem.

put them into the black box for numerical 
methods. That is the main conceptual 
contradiction of the standard Convex 
Optimization.

Intuitively, we always hope that the 
structure of the problem can be used for 
improving the performance of minimization 
schemes. Unfortunately, structure is a very 
fuzzy notion, which is quite difficult to 
formalize. One possible way to describe 
the structure is to fix the analytical type 
of functional components. For example, 
we can consider the problems with linear 
constraints only. It can help, but this 
approach is very fragile: If we add just a 
single constraint of another type, then we 
get a new problem class, and all theory must 
be redone from scratch.

On the other hand, it is clear that having 
the structure at hand we can play a lot with 
the analytical form of the problem.We can 
rewrite the problem in many equivalent 
settings using non-trivial transformations 
of variables or constraints, introducing 
additional variables, etc. However, this 
would serve almost no purpose without 
fixing a clear final goal. So, let us try to 
understand what it could be. 

As usual, it is better to look at classical 
examples. In many situations the sequential 
reformulations of the initial problem can 
be seen as a part of numerical scheme. We 
start from a complicated problem P and, 
step by step, change its structure towards to 
the moment we get a trivial problem (or, a 
problem which we know how to solve):
	 P → … → ( f *, x*).
A good example of such a strategy is the 
standard approach for solving system of 
linear equations
	 Ax = b.
We can proceed as follows:

1. Check if A is symmetric and positive 
definite. Sometimes this is clear from the 
origin of the matrix.
2. Compute Cholesky factorization of this 
matrix:
	 A = LLT ;
where L is a lower-triangular matrix. 
Form two auxiliary systems
	 Ly = b, LT x = y.
3. Solve these system by sequential 

exclusion of variables.
Imagine for a moment that we do not 

know how to solve the system of linear 
equations. In order to discover the above 
scheme we should apply the following

	   Golden Rules

1. Find a class of problems which  
can be solved very efficiently.a

2. Describe the transformation  
rules for converting the initial  
problem into desired form.

3. Describe the class of problems  
for which these transformation  
rules are applicable.

a In our example, it is the class  
of linear systems with triangular 
matrices. 			          (4)

In Convex Optimization, these rules were 
used already several times for breaking 
down the limitations of Complexity Theory.

Historically, the first example of that 
type is the theory of polynomial-time 
interior-point methods (IPM) based on self-
concordant barriers. In this framework, the 
class of easy problems is formed by problems 
of unconstrained minimization of self-
concordant functions treated by the Newton 
method. This know-how is further used in 
the framework of path-following schemes 
for solving so-called standard minimization 
problems. Finally, it can be shown that by 
a simple barrier calculus this approach can 
be extended onto all convex optimization 
problems with known structure (see [11,18] 
for details). The efficiency estimates of 
corresponding schemes are of the order 
O(υ1/2 ln υ–ε   ) iterations of the Newton 
method, where υ is the parameter of 
corresponding self-concordant barrier. 
Note that for many important feasible 
sets this parameter is smaller than the 
dimension of the space of variables. Hence, 
for the pure Black-Box schemes such an 
efficiency is simply unreachable in view 
of the lower complexity bound for class 
C3 (see (2)). It is interesting that formally 
the modern IPMs look very similar to the 
usual Black-Box schemes (Newton method 
plus path-following approach), which 
were developed in the very early days of 
Nonlinear Optimization [4]. However, this 
is just an illusion. For complexity analysis 
of polynomial-time IPM, it is crucial that 
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they employ the special barrier functions 
which do not satisfy the local Black-Box 
assumptions (see [10] for discussion).

The second example of using the rules 
(4) needs more explanations. By certain 
circumstances, these results were discovered 
with a delay of twenty years. Perhaps they 
were too simple. Or maybe they are in a 
seemingly very sharp contradiction with 
the rigorously proved lower bounds of 
Complexity Theory.

Anyway, now everything looks almost 
evident. Indeed, in accordance to Rule 1 
in (4), we need to find a class of very easy 
problems. And this class can be discovered 
directly in Table (2)! To see that, let us 
compare the complexity of the classes 
C1 and C2 for the accuracy of 1% (ε = 
10−2). Note that in this case, the accuracy-
dependent factors in the efficiency estimates 
vary from ten to ten thousands. So, the 
natural question is:

Can the easy problems from C2 help us 
somehow in finding an approximate solution 
to the difficult problems from C1?

And the evident answer is: Yes, of course! 
It is a simple exercise in Calculus to show 
that we can always approximate a Lipschitz-
continuous nonsmooth convex function 
on a bounded convex set with a uniform 
accuracy ε > 0 by a smooth convex function 
with Lipschitz-continuous gradient. We 
pay for the accuracy of approximation by a 
large Lipschitz constant M for the gradient, 
which should be of the order O . Putting 
this bound for M in the efficiency estimate 
of C2 in (2), we can see that in principle, it 
is possible to minimize nonsmooth convex 
functions by the oracle-based gradient 
methods with analytical complexity O  . 
But what about the Complexity Theory? It 
seems that it was proved that such efficiency 
is just impossible. 

It is interesting that in fact we do not 
get any contradiction. Indeed, in order 
to minimize a smooth approximation of 
nonsmooth function by an oracle-based 
scheme, we need to change the initial oracle. 
Therefore, from  mathematical point of 
view, we violate the Black-Box assumption. 
On the other hand, in the majority of 
practical applications this change is not 

difficult. Usually we can work directly with 
the structure of our problem, at least in the 
cases when it is created by us.

Thus, the basis of the smoothing technique 
[12,13] is formed by two ingredients: 
the above observation, and a trivial but 
systematic way for approximating a 
nonsmooth function by a smooth one. 
This can be done for convex functions 
represented explicitly in a max-form:

	 f(x) = max { 〈Ax − b, u 〉 − φ(u),
	          u∈Qd

where Qd is a bounded and convex dual 
feasible set and φ(u) is a concave function. 
Then, choosing a nonnegative strongly 
convex function d(u), we can define a 
smooth function
fμ(x) = max { 〈Ax − b, u 〉 − φ(u) − μ · d(u)} 	
           u∈Qd 		    	          (5)

which approximates the initial objective. 
Indeed, denoting Dd = max d(u),
		         u∈Qd

we get
	 f(x) ≥ fμ(x) ≥ f(x)  μDd.

At the same time, the gradient of function 
fμ is Lipschitz-continuous with Lipschitz 
constant of the order of O  (see [12]) for 
details).

Thus, we can see that for an 
implementable definition (5), we get a 
possibility to solve problem (1) in O  
iterations of the fast gradient method 
(3). In order to see the magnitude of the 
improvement, let us look at the following 
example:

            (6)

where Δn ∈ R n is a standard simplex. Then 
the properly implemented smoothing 
technique ensures the following rate of 
convergence:

    
If we apply to problem (6) the standard 
subgradient methods (e.g. [14]), we can 
guarantee only

    
Thus, up to a logarithmic factor, for 
obtaining the same accuracy, the methods 
based on smoothing technique need only 
a square root of iterations of the usual 
subgradient scheme. Taking into account, 
that usually the subgradient methods are 
allowed to run many thousands or even 
millions of iterations, the gain of the 
smoothing technique in computational time 
can be enormously big.4

It is interesting, that for problem (6) the 
computation of the smooth approximation is 
very cheap. Indeed, let us use for smoothing 
the entropy function:

Then the smooth approximation (5) of the 
objective function in (6) has the following 
compact representation:

Thus, the complexity of the oracle for f(x) 
and fμ(x) is similar. Note that again, as in 
the polynomial-time IPM theory, we apply 
the standard oracle-based method ((3) in 
this case) to a function which does not 
satisfy the Black-Box assumptions.

An inexplicable blindness to the 
possibility to reduce the complexity of 
nonsmooth optimization problems with 
known structure is not restricted to the 
smoothing technique only. As it was 
shown in [7], very similar results can be 
obtained by the extra-gradient method by 
G. Korpelevich [6] using the fact that this 
method is optimal for the class of variational 
inequalities with Lipschitz-continuous 
operator (for these problems it converges 
as O . Actually, in a verbal form, the 
optimality of the extra-gradient method 
was known already for a couple of decades. 
However, a rigorous proof of this important 
fact and discussion of its consequences for 
Structural Nonsmooth Optimization was 
published only in [7], after discovering the 
smoothing technique.

To conclude this section, let us discuss 
the last example of acceleration strategies 
in Structural Optimization. Consider 
the problem of minimizing the composite 

4 It is easy to see that the standard subgradient methods for nonsmooth convex minimization need indeed O
operations to converge. Consider a univariate function f(x) = ⏐x⏐, x ∈ R. Let us look at the subgradient process: 

It easy to see that
 

 However, the step-size sequence is optimal [8].
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objective function:

                           
(7)

where the function f is a convex 
diffierentiable function on dom Ψ with 
Lipschitz-continuous gradient, and function 
Ψ is an arbitrary closed convex function. 
Since Ψ can be even discontinuous, in 
general this problem is very difficult. 
However, if we assume that function Ψ 
is simple, then the situation is changing. 
Indeed, suppose that for any −y ∈ dom Ψ 
we are able to solve explicitly the following 
auxiliary optimization problem:

        

                         
(8)

(compare with (3)). Then it becomes possible 
to develop for problem (7) fast gradient 
methods (similar to (3)), which have the 
rate of convergence of the order O  
(see [15] for details; similar technique was 
developed in [3]). Note that the formulation 
(7) can be also seen as a part of Structural 
Optimization since we use the knowledge 
of the structure of its objective function 
directly in the optimization methods. 

Conclusion
In this paper, we have considered several 
examples of significant acceleration of the 
usual oracle-based methods. Note that the 
achieved progress is visible only because of 
the supporting complexity analysis. It is 
interesting that all these methods have some 
prototypes proposed much earlier:

− Optimal method (3) is very similar to 
the heavy point method: 

      xk+1 = xk − α ∇ f(xk ) + β(xk − xk − 1),

where α and β are some fixed positive 
coefficients (see [20] for historical details).

− Polynomial-time IPM are very similar 
to some variants of the classical barrier 
methods [4].
− The idea to apply smoothing for 
solving minimax problems is also 
not new (see [21] and the references 
therein).

At certain moments of time, these ideas 
were quite new and attractive. However, 
they did not result in a significant change 
in computational practice since they were 
not provided with a convincing complexity 

analysis. Indeed, many other schemes 
have similar theoretical justifications and 
it was not clear at all why these particular 
suggestions deserve more attention. 
Moreover, even now, when we know that 
the modified variants of some old methods 
give excellent complexity results, we cannot 
say too much about the theoretical efficiency 
of the original schemes.

Thus, we have seen that in Convex 
Optimization the complexity analysis 
plays an important role in selecting the 
promising optimization methods among 
hundreds of others. Of course, it is based 
on investigation of the worst-case situation. 
However, even this limited help is important 
for choosing the perspective directions for 
further research. This is true especially 
now, when the development of Structural 
Optimization makes the problem settings 
and corresponding efficiency estimates more 
and more interesting and diverse.

The size of this paper does not allow us to 
discuss other interesting setting of Structural 
Convex Optimization (e.g. optimization 
in relative scale [16, 17]). However, we 
hope that even the presented examples can 
help the reader to find new and interesting 
research directions in this promising field 
(see, for example, [1,2,5]).
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We note with sadness the passing of Garth 
McCormick, who died in Maryland on 
August 24. Professor McCormick’s 1968 
book with Anthony Fiacco on logarithmic 
barrier methods for nonlinear programming 
was acclaimed at the time of its publication, 
then had a second life during the interior-
point revolution starting in the mid-1980s, 
when it was recognized for its seminal 
contributions. He was also a pioneer 
in computational differentiation, and 
worked on many applications of nonlinear 
programming. We send our deepest 
condolences to his family.

I’m delighted with the launch of the new 
MPS journal Mathematical Programming 
Computation, whose first issue will appear 
in 2009. An article by editor-in-chief Bill 
Cook and general editor Thorsten Koch 
describing the genesis of the journal, 
its aims and scope, and the large and 
distinguished editorial staff, appears in this 
issue of Optima. MPC (as we inevitably 
refer to it) is innovative in several respects, 
including its strong focus on software and 
computation, its mechanism for evaluating 
contributions, and its means of distribution 
(freely available online, with print edition 
published by Springer and included in MPS 
membership). My thanks to all who serve 
as editors and advisors, and especially to 
Bill and Thorsten for their tireless work in 
booting up the journal. Now it is up to us 
to do some great computational research 
and send our papers (and software) to MPC!

Planning for our Society’s flagship event, 
ISMP in Chicago (August 23-29, 2009), 
continues to pick up speed, as you can see 
from the web site www.ismp2009.org . The 
plenary and semi-plenary speakers have 
been announced, as has the list of clusters 
and cluster organizers. Registration and 
abstract submission through the web site 
will be available in November, along with 
hotel information. Please contact a cluster 
organizer in the relevant area if you wish to 
speak or organize a session.

Prizes sponsored by MPS and fellow 
societies will be awarded at the opening 
ceremony of ISMP, at Orchestra Hall in 
Chicago. These are the leading prizes in 
our discipline, and I urge you to visit the 
Society’s web site www.mathprog.org for 
information on prizes and the current 
calls for nominations, and think about 
nominating your most deserving colleagues 
for these honors.

To those members who are not yet regular 
users of Optimization Online (www.
optimization-online.org) I urge you to take 
a look at this valuable service. It contains 
a repository of optimization preprints, 
which you can browse and contribute to. 
You can also sign up for a digest that is 
emailed at the start of each month. The 
cgi scripts underlying the site have held 
up well without extensive modification 
since being written by Jean-Pierre Goux in 
2000, though there is the occasional hiccup 
because of server transitions or security 
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problems at Argonne, the host site. In the 
coming months, we hope to find the time, 
resources, and expertise to improve the 
utility of the site for optimization researchers 
and users.

There are a number of Society initiatives 
in the pipeline that you’ll hear more about 
in future columns. We have been working 
on a new web site, which will be brought 
online at the current URL in the coming 
months. The new site will be easier to 
maintain and will scale better as the amount 
of content grows. We’re also working on 
revisions to the Society’s constitution and 
by-laws, modernizing them and bringing 
them into line with current practice, 
and into conformity with the standards 
expected for nonprofit organizations. The 
revisions to the bylaws have been quite 
extensive, with the Society’s council and 
executive committee deeply involved in the 
process. We will be presenting the modified 
constitution to members in coming months, 
with a view to ratifying it at the Society’s 
business meeting at ISMP 2009.

You should by now have received 
membership renewal notices for your next 
year membership in MPS. 2009 will be 
a banner year for the Society, because of 
ISMP, the new journal, and the other 
initiatives mentioned above and in your 
renewal letter. I look forward with keen 
anticipation to your continued participation, 
especially those members who joined as a 
result of their attendance at ICCOPT 2007.

Steve Wright
15 October 2008

Mail to:
Mathematical Programming Society 
3600 University City Sciences Center 
Philadelphia, PA 19104-2688 USA

Cheques or money orders should be made 
payable to The Mathematical Programming 
Society, Inc. Dues for 2008, including 
subscription to the journal Mathematical 
Programming, are US $85. Retired are $40. 
Student applications: Dues are $20. Have a 
faculty member verify your student status 
and send application with dues to above 
address.

Faculty verifying status

Institution

Application for Membership

I wish to enroll as a member of the Society.
My subscription is for my personal use and not for the benefit of any library or institution.
c I will pay my membership dues on receipt of your invoice.
c I wish to pay by credit card (Master/Euro or Visa).

credit card no.	 expiration date

family name

mailing address

telephone no.	 telefax no.

E-mail

signature4
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to recommend that MPS possibly move 
forward with a web-based journal.

An MPC proposal was delivered to the 
MPS Council in September and approved 
on November 11, 2007. Following this, 
negotiations began with Springer Verlag 
concerning possible distribution of the 
journal. 

On July 9, 2008, the MPS Council 
unanimously approved the following two 
motions.

1. Council approves the establishment of 
Mathematical Programming Computation 
(MPC) as a journal of the Society, following 
the guidelines proposed in the attached 
document “Mathematical Programming 
Computation: Notes on a New MPS 
Journal”, with William Cook as the first 
editor-in-chief and Thorsten Koch as the 
first general editor. Council further approves 
the initial advisory board listed in this 
document.

2. Council approves the proposed contract 
with Springer-Verlag GmbH attached to 
this message, concerning the publication of 
Mathematical Programming Computation.

And MPC was off and running! The 
formation of the MPC Editorial Board 
was completed in August 2008 and the 
first manuscript was submitted to MPC on 
September 9, 2008.

The directors of the INFORMS 
Optimization Society and the SIAM 
Activity Group on Optimization have 
been contacted regarding MPC. Both 
organizations strongly support the plans for 
the journal. Discussions with the COIN-
OR Technical Board have taken place 
over the past year, focusing on possible 
connections between MPC and the  
COIN-OR services.

2 Journal Distribution
MPC will be published together with 
Springer Verlag, with the first volume, 
consisting of four issues, appearing in 2009. 
The partnership with Springer creates an 
attractive combination of accessibility for 
both authors and academic institutions.

All MPS members will receive print 
versions of the journal as part of their 
membership benefits. The contents of the 
journal will be made freely available on 
the society-run MPC web site mpc.zib.
de, housed at the Konrad-Zuse-Zentrum 
Berlin (ZIB). Supplementary material will 
be included on the web site, supporting 
the computational studies described in the 
journal articles.

3 Aims and Scope
MPC publishes original research articles 
concerning computational issues in 
mathematical programming. Topics covered 
in MPC include linear programming, 
convex optimization, nonlinear 
optimization, stochastic optimization, 
robust optimization, integer programming, 
combinatorial optimization, global 
optimization, network algorithms, and 
modeling languages. 

MPC supports the creation and 
distribution of software and data that foster 
further computational research. The opinion 
of the reviewers concerning this aspect of 
the provided material is a considerable factor 
in the editorial decision process. Another 
factor is the extent to which the reviewers 
are able to verify the reported computational 
results. To these aims, authors are highly 
encouraged to provide the source code 
of their software. Submitted software is 
archived with the corresponding research 
articles. The software is not updated and 
the journal is not intended to be the point 
of distribution for the software. The author’s 
licensing information is included with the 
archived software. In case the software is no 
longer available through other means, MPC 
will distribute it on individual request under 
the license given by the author. Our intent 
is to at least partly remedy today’s situation 
where it is often impossible to compare new 
results with those computed by other codes 
several years ago.

Articles describing software where no 
source code is made available are acceptable, 
provided reviewers are given access to 
executable codes that can be used to evaluate 
reported computational results. Articles may 
also provide data, their description, and 
analysis. Articles not providing any software 
or data will be considered, provided they 
advance the state-of-the-art regarding a 
computational topic.

4 Information for Authors

Manuscript
Only articles written in the English 
language will be considered for publication. 
There is no pre-set page limit on articles, 
but the journal encourages authors to be 
concise. The length of the manuscript will 
be taken into consideration in the review 
process. Authors should aim to present 
summaries of computational tests, rather 
than long tables of individual results. 
Detailed tables and log files can be included 
in supplementary material to be made 
available on the journal’s Web site.

Articles should give a general description 
of the software, its scope, and the algorithms 
used. Rather than long presentations of well-
known algorithms, authors are encouraged 
to give details that deviate from the known 
state-of-the-art on specific design decisions 
and their consequences and implementation 
details.

Software
Computer codes must be accompanied 
by a clear description of the environment 
in which they are expected to be built, 
including instructions on how to obtain any 
required third-party packages. Clear and 
easy to follow instructions must be given on 
how to build and run the author’s software, 
and how to use it to recompute any 
computational results given in the article.

Submission
Authors are invited to submit articles for 
possible publication in MPC. Articles 
can be submitted in Adobe PDF format 
through the journal’s web-based system at 
mpc.zib.de. Software and supplementary 
material can also be submitted through this 
system. Software should be delivered as a 
zip or gzipped-tar archive file that unpacks 
into a directory, reflecting the name of the 
software.

Review
Articles within the scope of the journal 
will receive a rigorous review. The editorial 
board will strive to have papers reviewed 
within a four-month period. This target will 
be extended in cases of exceptionally long or 
difficult manuscripts.

The review of articles describing 
software will include an evaluation of the 

continues from page 1
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computer codes received with the submitted 
manuscript. The criteria used in the 
software review include the following points.

1. The innovation, breadth, and depth of 
the contribution.

2. An evaluation of the progress in 
performance and features compared 
with existing software.

3. The conditions under which the 
software is available.

4. The availability and quality of user 
documentation.

5. The accessibility of the computer code; 
the ease with which a developer can 
make modifications.

5 Editorial Board
The structure of the MPC Editorial Board 
is similar to that of the Mathematical 
Programming Series A board, with an 
additional team of Technical Editors to 
carry out software evaluations. It has been 
suggested that MPC adopt the flat model 
used in SIAM journals, with the aim of 
reducing average review times. Although we 
are not adopting this SIAM-like structure, 
this point can be revisited if a significant 
percentage of review times are above the 
four-month target.

Editor-in-Chief
The Editor-in-Chief has the overall 
responsibility for the journal. The duties 
include the formation of the Editorial 
Board, the establishment of guidelines and 
quality standards for the review process, 
oversight of the timeliness and fairness of 
reviews, the assignment of manuscripts to 
Area Editors, light copy editing of final 
manuscripts, and the general promotion of 
the journal. The initial Editor-in-Chief is 
William Cook (Georgia Tech).

General Editor
The General Editor is responsible for the 
quality of the software evaluation. The 
duties include consulting with the Editor-
in-Chief on the selection of a board of 
Technical Editors, providing guidelines 
to the TE board, serving as a contact with 
the hardware/software support group, and 
assisting in setting up testing facilities. The 
initial General Editor is Thorsten Koch 
(ZIB).

Production Editor
The Production Editor is responsible for 
building and maintaining the MPS web 
distribution of the journal, including an 
on-line submission process. The initial 
Production Editor is Wolfgang Dalitz (ZIB).

Advisory Board
An Advisory Board provides general 
oversight of the journal. Membership on 
the board is subject to approval by the MPS 
Publications Committee and the MPS 
Council. The initial board consists of the 
following members.

• Robert Bixby (Rice University)
• Donald Goldfarb (Columbia University)
• Nick Gould (Rutherford Appleton 

Laboratory)
• Martin Grötschel (Konrad-Zuse-

Zentrum Berlin)
• David Johnson (AT&T Research)
• Kurt Mehlhorn (Max-Planck-Institut 

Saarbrücken)
• Hans Mittelmann (Arizona State 

University)
• Arkadi Nemirovski (Georgia Tech)
• Jorge Nocedal (Northwestern 

University)
• Michael Trick (Carnegie Mellon 

University)
• Robert Vanderbei (Princeton University)
• David Williamson (Cornell University)

Area Editors
Area Editors have direct contact with 
authors, carry out initial reviews of papers, 
make assignments to Associate Editors and 
to Technical Editors, and make editorial 
decisions to accept or decline submissions. 
The initial board of Area Editors and their 
areas of interest are given in the following 
list.

• Daniel Bienstock (Columbia University): 
Linear and Integer Programming

• Robert Fourer (Northwestern 
University): Modeling Languages and 
Systems

• Andrew V. Goldberg (Microsoft 
Research): Graph Algorithms and Data 
Structures

• Sven Leyffer (Argonne National 
Laboratory): Nonlinear Optimization

• Jeffrey T. Linderoth (Univ. of 
Wisconsin-Madison): Stochastic 
Optimization, Robust Optimization, 
and Global Optimization

• Gerhard Reinelt (University of 
Heildelberg): Combinatorial 
Optimization

• Kim-Chuan Toh (National University of 
Singapore): Convex Optimization

Associate Editors
Papers are assigned to an Associate Editor 
by one of the Area Editors or by the Editor-
in-Chief. The AE will seek to obtain reviews 
from at least two referees (one of whom 
could be the AE), or in the case of weaker 
papers a single negative report. The identity 
of the assigned AE is not revealed to the 
author of the paper. The members of the
AE board are as follows.

• Shabbir Ahmed, Georgia Tech
• Samuel Burer, University of Iowa
• Alberto Caprara, University of Bologna
• Sanjeeb Dash, IBM TJ Watson Research 

Center
• Camil Demetrescu, University of Rome
• Matteo Fischetti, University of Padova
• Emmanuel Fragniere, HEG, Geneva
• Michael P. Friedlander, University of 

British Columbia
• Jacek Gondzio, University of Edinburgh
• Philip E. Gill, University of California 

San Diego
• Oktay Günlük, IBM TJ Watson 

Research Center
• Michal Kocvara, University of 

Birmingham
• Adam N. Letchford, Lancaster 

University
• Andrea Lodi, University of Bologna
• François Margot, Carnegie Mellon 

University
• Rafael Marti, University of Valencia
• Laurent Michel, University of 

Connecticut
• David Pisinger, University of 

Copenhagen
• Nikolaos V. Sahinidis, Carnegie Mellon 

University
• Peter Sanders, University of Karlsruhe
• Melvyn Sim, National University of 

Singapore
• Huseyin Topaloglu, Cornell University
• Michael Ulbrich, Technische Universität 

München
• Andreas Wächter, IBM TJ Watson 

Research Center
• Renato Werneck, Microsoft Research
• Yin Zhang, Rice University

continue on page 11
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Discussion Column 
Alexandre d’Aspremont
Javier Peña
Katya Scheinberg

The smoothing method which Yurii 
Nesterov describes in his article turns out 
not only to be an important theoretical 
advance in the first order method, but 
also an inspiration for new approaches 
for many large scale convex optimization 
problems. 

We present two articles discussing the 
use of smooth first order methods for 
two different settings, for which classical 
approaches such as interior point methods 
failed to produce efficient  methods. One 
is a classical convex nonsmooth setting 
- semidefinite programming. While 
semidefinite programs are inherently non-
smooth, the smoothing and projection 
subproblems formed in the smoothing 
argument detailed in the previous article 
can be solved  explicitly for a wide class 
of semidefinite optimization problems. 
This means that smooth first-order 
methods offer an alternative to interior 
point methods for solving large-scale 
semidefinite programs.

The other setting is computation of 
Nash equilibria of large sequential two-
person, zero-sum games with imperfect 
information. The smoothing approach has 
enabled the authors to find near-equilibria 
for a four-round model of Texas Hold'em 
poker — a problem that is several orders of 
magnitude larger than what was previously 
computable. A poker player based on the 
resulting strategies turns out to be superior 
to most automatic poker players and  is 
competitive with the best human poker 
players.

Smooth Semidefinite Optimization
Alexandre d’Aspremont

1. Introduction
Semidefinite programming has received 
a significant amount of attention since 
[NN94] extended the classic complexity 
analysis of Newton’s method to a much 
broader class of functions. Since then, 
and despite their somewhat abstract 
nature, semidefinite programs have 
found a wide array of applications in 
engineering (see [BV04]), combinatorial 
optimization (see [Ali95,GW95]), statistics 
(see [BEGd07]) or machine learning (see 
[SBXD05,WS06,LCB+02]) for example.

A number of efficient numerical packages 
have been developed to solve relatively large 
semidefinite programs using interior point 
algorithms based on Newton’s method (see 
[Mit03] for an early survey). These codes 
exhibit both rapid convergence and excellent 
reliability. In particular, the quadratic 
convergence of Netwon’s method near the 
optimum mean that high precision solutions 
can be obtained by running only a few more 
iterations. However, because these methods 
form second order (Hessian) information to 
compute the Newton step, they have very 
high memory requirements, as well as a very 
high numerical cost per iteration.

At the other end of the complexity 
spectrum lie bundle type methods (see 
[HR00,Ous00] for example) which 
directly apply nonsmooth to semidefinite 
optimization problems after an appropriate 
choice of subdifferential. These methods 
only require forming a subgradient at 
each iteration, which in practice means 
computing a few leading eigenvalues, 
hence have a very low computational/
memory cost per iteration. However, early 
bundle algorithms had a dependence in 
the precision target ε > 0 of O(1/ε2) which 
restricted their use to applications with a 
very coarse precision target. While some 
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early first order algorithms produced 
improved bounds of O(1/ε), they remained 
relatively specialized. Furthermore, bundle 
methods required a significant number of 
input parameters to be manually tuned to 
pick an appropriate subgradient and improve 
efficiency.

The smoothing argument developed 
in [Nes05] and discussed in the previous 
paper solves both these issues at once. It 
proves convergence of smooth optimization 
methods on a wide class of semidefinite 
optimization problems with an explicit 
bound of O(1/ε) on the total number of 
iterations, and since the value of most 
parameters are explicit functions of the 
problem data, these methods require no 
parameter tuning.

In what follows, we show how the 
smooth optimization algorithm detailed in 
[Nes05] was used in [dEGJL07] to solve a 
sparse PCA problem. We refer the reader to 
[Nes07], [Ous00], [Nem04] or [LNM07] 
for further details and alternative algorithms 
with similar characteristics.

2. Semidefinite Optimization
For simplicity here, we will focus on the 
particular semidefinite program formed in 
[dEGJL07] to bound sparse eigenvalues of 
covariance matrices. Given a symmetric 
matrix A ∈ Sn, we seek to solve:

minimize λmax(A + U)
subject to |Ui j | ≤ ρ, 	 (1)

in the variable U ∈ Sn. The objective of this 
problem is not smooth: when the leading 
eigenvalue λmax(A + U) is not simple, 
the function is non-differentiable (see 
[Lew03,OW95] for details and an explicit 
derivation of the Hessian). The smoothing 
argument in [Nes05] first finds a smooth 
approximation of the objective function 
in (1) then applies an optimal first-order 
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method to the smooth problem. The benefit 
of the smoothing step is that optimizing (1) 
using nonsmooth method has a complexity 
of O(1/ε2) while we will see that the smooth 
approximate problem can be solved with a 
complexity of O(1/ε).

2.1. Smoothing
In this case, smoothing the objective in (1) 
turns out to be relatively straight-forward. 
Indeed, the function

fμ(X) = μ log (Tr exp(X/μ))

is a uniform ε-approximation of λ max(X). 
Furthermore, it was shown in [Nes07] 
or [Nem04] that its gradient ∇fμ(X) is 
Lipschitz continuous with constant

   	
The tradeoff between the quality of the 
approximation (controlled by ε) and the 
smoothness of the gradient (given by  
L = log n/ε) is here completely explicit. We 
will now apply a smooth minimization 
algorithm to the smooth approximation of 
problem (1).

2.2. Smooth minimization
We now apply a slightly more elaborate 
version of the optimal first-order algorithm 
detailed in equation (3) in the previous 
paper. Let us write

Q1 = {U ∈ Sn : |Ui j | ≤ ρ}

the algorithm proceeds as follows.

Repeat:
1. Compute fμ(A + Uk) and ∇fμ(A + Uk)
2. Find Yk = arg minY ∈Q 1

	
3. FindWk = arg minW∈Q1

4. Set
 

Until gap ≤ ε.

Step 1 is the most computationally 
intensive step in the algorithm and involves 
computing a matrix exponential to derive 
the gradient of fμ(A+U). Steps 2 and 3 are 
simply Euclidean projections on the unit 
box in Sn.

2.3. Implementation
To compute the gradient ∇ fμ(A + U) 
without overflows, we can evaluate it as:

having set λ = λmax(A + U). Computing 
the gradient thus means computing a 
matrix exponential, which is a classic linear 
problem (see [MVL03] for a complete 
discussion) and has a complexity of O(n3). 

In fact this expression for the gradient also 
provides us with an intuitive interpretation 
of the connection between the smoothing 
technique and bundle methods. Because the 
matrix exponential can also be written:

    
where λi and vi are the eigenvalues and 
eigenvectors of the matrix (A + U−λI)/μ in 
decreasing order, the gradient can be seen 
as a bundle of subdifferentials vi v

T
i with 

weights decreasing exponentially with λi. 
When the objective function is smooth 
λmax(A + U) is well separated from the rest 
of the spectrum and the smooth gradient 
is close to the nonsmooth one v1vT

1 , when 
the leading eigenvalues are tightly clustered 
however the gradient will be a mixture of 
subdifferentials. In that sense, the smooth 
semidefinite minimization algorithm can be 
seen as a bundle method whose weights are 
adjusted adaptively with smoothness.
Pushing the argument a bit further, one can 
show that only a few eigen-values are often 
required to approximate with a precision 
sufficient to maintain convergence (see 
[d’A05] for details).

2.4. Other examples
The success of the smoothing technique in 
the previous examples stems from the fact 
that smooth uniform approximations could 
be computed efficiently (analytically in fact) 
and that both projections on the feasible 
set were available in closed form. This 
situation is far from being exceptional and 
the smoothing technique has been applied 
to several other semidefinite optimization 
problems which require solving large-scale 
dense instances with relatively low precision. 
In fact, projecting on simple feasible sets 
is often much simpler than forming the 
corresponding barrier or computing a 
Newton step. 

Another problem instance where 
smooth optimization methods have proved 
very efficient is covariance selection (see 
[dBEG06]). Here we solve,

in the variable X ∈ Sn. Here, the objective 
function is already smooth on the feasible 
set, whenever α > 0. Here too, the two 
projection steps can be computed by 
projecting the spectrum of the current 
iterate X, hence can be computed with 
complexity O(n3).

3. Numerical experiments
First-order methods for semidefinite 
optimization tradeoff a much lower cost per 
iteration with a much higher dependency 
on the target precision. This means that 
one cannot hope to obtain solutions up to 
a precision 10−8 that is routinely achieved 
by interior point algorithms. However, 
first-order methods do solve semidefinite 
optimization problems for which running 
even one iteration of interior point 
algorithms is numerically hopeless.

In Figure 1, using the data in [ABN+99], 
with ρ = 1, we plot CPU time to get a 102 
decrease in duality gap. The computing 
times are summarized below. We notice 
that solving a dense semidefinite program of 
size 2000 up to a relative precision of 10−2 
takes less than ten minutes on a quad-core 
computer with 2Gb of RAM.

Fig. 1. CPU time for solving problem (1) on 
covariance matrices of increasing dimension 
n, formed using a gene expression data set.

	 n 	 CPU time (secs)
	 100 	 0 m 01 s
	 500 	 0 m 11 s
	 1000	 1 m 16 s
	 2000 	 9 m 41 s
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1 Introduction
A sequential game is a mathematical model 
of the interaction of multiple self-interested 
players in dynamic stochastic environments 
with limited information. Poker is a widely 
popular example of these types of games. 
Unlike other popular sequential games 
such as chess or checkers, poker is a game 
of imperfect information. Consequently, 
speculation and counter-speculation are 
inherent features of the game and make the 
computation of optimal strategies a highly 
non-trivial task. Optimal strategies must 
necessarily include tactics such as bluffing 
and slow playing. Indeed, poker has been 
identified as an central challenge in artificial 
intelligence [2] and has become a topic of 
active research [1,6,7,9].

A fundamental solution concept for 
sequential games is Nash equilibrium, which 
is a simultaneous choice of strategies for 
all players so that each player’s choice is 
optimal given the other players’ choices. For 
a two-person, zero-sum sequential game, the 
Nash equilibrium problem has the following 
saddle-point formulation:

   	    (1)

Here the sets Q1,Q2 are polytopes associated 
to the possible sequences of moves of the 
players, and A is Player 2’s payoff matrix 
[3,8,14,15]. The saddle-point problem (1) 
can be cast as a linear program, but the 
resulting formulation is prohibitively large 
for most interesting games. For instance, 
the payoff matrix A in (1) for limit Texas 
Hold’em poker has dimension of order 
1014×1014 and contains more than 1018 non-
zero entries. Problems of this magnitude are 
far beyond the capabilities of state-of-the-art 
general-purpose linear programming solvers 
[4,5]. On the other hand, the equilibrium 

problem (1) possesses a great deal of 
structure that makes it particularly well-
suited for Nesterov’s smoothing techniques. 
The three main structural features are the 
saddle-point formulation, the combinatorial 
structure of the sets Q1,Q2, and a natural 
factorization of the payoff matrix A. As the 
sections below explain, these features are 
nicely compatible with Nesterov’s smoothing 
technique. By taking advantage of these 
structural properties, we have computed 
near-equilibria for sequential games whose 
linear programming formulation would 
require about three hundred million 
variables and constraints, and over four 
trillion non-zeros entries. The computed 
near-equilibria have been instrumental in 
the design of competitive automatic poker 
players, including the winner of the 2008 
AAAI annual poker competition.

2 Smoothing technique for saddle-
point problems
The saddle-point problem (1) can be written 
as 

where

The functions f and f are non-smooth 
convex and concave respectively. As 
Nesterov points out in the previous article, 
the max-form of f  and min-form of f 
can be readily used to construct smooth 
approximations. More precisely, assume di is 
a non-negative and strongly convex function 
on Q i for i = 1, 2. Such a function is called 
a prox-function for Q i. For a given μ > 0 the 
functions

     (2)
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are smooth with Lipchitz gradients of order 
O(1/μ) and satisfy

where Di = max{di(u) : u ∈ Q i}. By applying 
an optimal gradient method to the smooth 
approximations fμ ,fμ , Nesterov [11,12] 
devised an algorithm that computes x ∈ Q 

1,y ∈ Q 2 such that

	 0 ≤ f (x)−f(y) ≤ e

in O(1/e) first-order iterations. Each iteration 
requires only a few elementary operations, 
some matrix-vector multiplications involving 
A, and the solution of some subproblems of 
the form 

max{〈s,u〉−di(u) : u ∈ Q i}		        (3)
for i = 1,2.

3 Nice prox-functions
In order for the above smoothing technique 
to be an implementable algorithm, problem 
(3) must be easily computable since it has 
to be solved several times at each iteration. 
We say that a prox-function di for Q i is 
nice if the solution to problem (3) is easily 
computable, for example via a closed-form 
expression.

The polytopes Q1,Q2 arising in the Nash 
equilibrium problem (1) encode the behavior 
strategies of the players in the sequential 
game [13–15]. A behavior strategy for Player 
i prescribes a probability distribution over 
the choices available to Player i at every state 
of the game where it is Player i’s turn to 
make a move. For games in strategic normal 
form, there is no sequential component 
and the sets Q1,Q2 are simplexes. In this 
case each element of Qi is a probability 
distribution over the set of pure strategies 
available to Player i. For sequential games 
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in extensive form, the sets Q1,Q2 are the 
sets of realization plans of the players. A 
realization plan is a concise encoding of a 
behavior strategy in terms of the possible 
sequences of moves of the player [14,15]. 
Sets of realization plans are polytopes 
that can be seen as a generalization of 
simplexes. They are obtained by recursive 
application a certain branching operation 
that encapsulates the relationship between 
consecutive sequences of moves [8,14,15].

A crucial ingredient in the 
implementation of a first-order smoothing 
algorithm for (1) is the construction of nice 
prox-functions for the sets of realization 
plans Q1,Q2. Hoda, Gilpin and Peña [8] 
provide a generic template that constructs 
nice prox-functions for Q1,Q2 using 
as building blocks any given family of 
nice prox-function for simplexes. In our 
numerical implementation, we have used 
the entropy function lnm+∑m

i =1 xi ln xi and 
the Euclidean distance function ½∑m

i =1(xi 
−1/m)2 as building blocks. Both of these are 
families of nice prox-functions for simplexes 
[10,11]. In our computational experiments 
we obtained consistently faster convergence 
with the prox-functions induced by the 
entropy function.

4 Concise representation of the 
payoff matrix
The payoff matrix A in poker games has a 
diagonal block structure where each block 
in turn has a natural factorization. For 
instance, for a four-round poker game, the 
payoff matrix can be written as

The matrices Fi correspond to sequences of 
moves in round i that end with a fold. The 
matrix S correspond to sequences of moves 
that end with a showdown. The matrices 
Bi encode the betting structure in round i. 
Finally, the matrix W encode the win/lose/
draw information determined by poker hand 
ranks.

We take advantage of this factorization 
to avoid forming the matrix A explicitly. 
Instead, we construct subroutines that 
compute the matrix-vector products x  Ax 
and y  ATy as needed in the smoothing 
algorithm. This concise representation 
of the payoff matrix yields dramatic 
savings in terms of the amount of space 

needed to store a problem instance. In 
particular, the concise representation for 
the largest game that we have handled so 
far requires about 40GB of memory [3]. 
The additional memory overhead required 
by the smoothing algorithm is essentially 
negligible. By contrast, an explicit sparse 
representation of this problem would require 
over 80,000GB of memory. A general-
purpose linear programming solver, such as 
an interior-point algorithm, would require 
a substantial additional amount of memory 
throughout its execution.
In addition to the savings in memory 
requirements, the above concise 
representation of the payoff matrix A can 
be used for parallel computation. A parallel 
implementation of the matrix-vector 
subroutines achieves nearly a linear speedup 
[3]. This in turn has an immediate impact 
on the overall performance of the smoothing 
algorithm because the matrix-vector 
products are the main bottleneck at each
iteration.
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The Fulkerson Prize Committee invites 
nominations for the Delbert Ray 
Fulkerson Prize, sponsored jointly by the 
Mathematical Programming Society and 
the American Mathematical Society.  Up to 
three awards are presented at each (triennal) 
International Symposium of the MPS.  The 
Fulkerson Prize is for outstanding papers in 
the area of discrete mathematics.  The Prize 
will be awarded at the 20th International 
Symposium on Mathematical Programming 
to be held in Chicago, August 23-29, 2009.

Eligible papers should represent the final 
publication of the main result(s) and 
should have been published in a recognized 
journal, or in a comparable, well-
refereed volume intended to publish final 
publications only, during the six calendar 
years preceding the year of the Symposium 
(thus, from January 2003 through 

D.R. FULKERSON PRIZE
Call for nominations

December 2008). The prizes will be given 
for single papers, not series of papers or 
books, and in the event of joint authorship 
the prize will be divided.

The term 'discrete mathematics' is 
interpreted broadly and is intended 
to include graph theory, networks, 
mathematical programming, applied 
combinatorics, applications of discrete 
mathematics to computer science, and 
related subjects. While research work in 
these areas is usually not far removed from 
practical applications, the judging of papers 
will be based only on their mathematical 
quality and significance.

Further information about the Fulkerson 
Prize including previous winners can be 
found at
www.mathprog.org/prz/fulkerson.htm and at 
www.ams.org/prizes/fulkerson-prize.html.

Nominations are invited for the 2009 
Beale-Orchard-Hays Prize for excellence in 
computational mathematical programming.

The Prize is sponsored by the Mathematical 
Programming Society, in memory of 
Martin Beale and William Orchard-Hays, 
pioneers in computational mathematical 
programming.  Nominated works 
must have been published between 
Jan 1, 2006 and Dec 31, 2008, and 
demonstrate excellence in any aspect of 
computational mathematical programming.  
Computational mathematical programming 
includes the development of high-quality 
mathematical programming algorithms 
and software, the experimental evaluation 
of mathematical programming algorithms, 
and the development of new methods 
for the empirical testing of mathematical 
programming techniques.  Full details of 
prize rules and eligibility requirements can 
be found at www.mathprog.org/prz/boh.htm

Beale-Orchard-Hays Prize 2009—Call for nominations
The 2009 Prize will be awarded at the 
awards session of the International 
Symposium on Mathematical 
Programming, to be held August 23-
28, 2009, in Chicago, Illinois, USA.  
Information about the Symposium can be 
found at www.ismp2009.org
The 2009 Prize Committee consists of

Erling Andersen, Mosek
Philip Gill, University of California San 

Diego
Jeff Linderoth, University of Wisconsin 

Madison
Nick Sahinidis (chair), Carnegie Mellon 

University

Nominations can be submitted 
electronically or in writing, and should 
include detailed publication details of the 
nominated work.  Electronic submissions 
should include an attachment with the 
final published version of the nominated 

work.  If done in writing, submissions 
should include four copies of the nominated 
work.  Supporting justification and any 
supplementary material are strongly 
encouraged but not mandatory.  The Prize 
Committee reserves the right to request 
further supporting material and justification 
from the nominees. 

Nominations should be submitted to:

Nick Sahinidis
Department of Chemical Engineering
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
USA 
e-mail: sahinidis[at]cmu.edu

The deadline for receipt of nominations is 
January 15, 2009.

The Fulkerson Prize Committee consists 
of Bill Cook, Georgia Tech, chair, Michel 
Goemans, MIT and Danny Kleitman, MIT.

Please send your nominations (including 
reference to the nominated article and 
an evaluation of the work) by January 
15th, 2009 to the chair of the committee. 
Electronic submissions to bico@isye.gatech.
edu are preferred.

William Cook
Industrial and Systems Engineering
Georgia Tech
765 Ferst Drive
Atlanta, Georgia 30332-0205
USA 

e-mail: bico@isye.gatech.edu
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The 20th International Symposium on Mathematical Programming will take place August 23-29, 2009 in 
Chicago, Illinois. The meeting will be held at the University of Chicago’s Gleacher Center and the Marriott 
Downtown Chicago Magnificent Mile Hotel. Festivities planned for the conference include the opening 
session in Chicago’s Orchestra Hall, home of the Chicago Symphony Orchestra, the conference banquet at 
the Field Museum, Chicago’s landmark natural history museum, and a celebration of the 60th anniversary of 
the Zeroth ISMP Symposium.

The invited speakers are 
Eddie Anderson, University of Sydney
Friedrich Eisenbrand, EPFL 
Matteo Fischetti, University of Padova
Pablo Parrilo, MIT
Martin Skutella, Technische Universität Berlin
Éva Tardos, Cornell University
Shuzhong Zhang, Chinese University of Hong Kong
Mihai Anitescu, Argonne National Lab
András Frank, Eötvös Loránd University
Jong-Shi Pang, UIUC
Andrzej Ruszczynski, Rutgers University
David Shmoys, Cornell University
Paul Tseng, University of Washington

Papers on all theoretical, computational and practical aspects of mathematical programming are welcome. 
The program clusters and their organizers have been announced. Parties interested in organizing a session are 
encouraged to contact the cluster chairs.

Combinatorial Optimization	 András Frank, Tom McCormick
Integer and Mixed-Integer Programming	 Andrea Lodi, Robert Weismantel
Nonlinear Programming	 Philip Gill, Philippe Toint
Nonlinear Mixed-Integer Progamming	 Sven Leyffer, Andreas Wächter
Complementarity and Variational Inequalities	 Masao Fukushima, Danny Ralph
Conic Programming	 Kim-Chuan Toh
Nonsmooth and Convex Optimization	 Michael Overton, Marc Teboulle
Stochastic Optimization 	 Shabbir Ahmed, David Morton
Robust Optimization	 Aharon Ben-Tal
Global Optimization	 Christodoulos A. Floudas, Nick Sahinidis
Logistics and Transportation	 Xin Chen, Georgia Perakis
Game Theory	 Asu Ozdaglar, Tim Roughgarden.
Telecommunications and Networks	 Martin Skutella
Approximation Algorithms	 Cliff Stein, Chandra Chekuri
Optimization in Energy Systems	 Andy Philpott, Claudia Ságastizabal
PDE-Constrained Optimization	 Matthias Heinkenschloss, Michael Hintermüller
Derivative-Free and Simulation-Based Optimization	 Jorge Moré, Katya Scheinberg
Sparse Optimization	 Michael Saunders, Yin Zhang
Finance and Economics	 Tom Coleman, Kenneth Judd
Implementations and Software	 Erling Andersen, Michal Kočvara
Variational Analysis 	 Boris Mordukhovich, Shawn Wang

Registration and hotel information will be available by the end of November. Further information about the 
symposium can be found on the conference Web site, www.ismp2009.org.
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