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Although pattern search methods were introduced

forty years ago, they have recently been the subject

of much renewed interest within the nonlinear

programming community. For those of us who are

new to the recent developments in the convergence

theory for these methods, Virginia Torczon,

Michael Lewis and Michael Trosset have prepared

an overview on why these methods work.

–MARY BETH HRIBAR

Why Pattern Search Works*

1 Introduction

Pattern search methods are a class of direct search methods for nonlinear

optimization. Since the introduction of the original pattern search meth-

ods in the late 1950s and early 1960s [2, 5], they have remained popular

with users due to their simplicity and the fact that they work well in

practice on a variety of problems. More recently, the fact that they are

provably convergent has generated renewed interest in the nonlinear pro-

gramming community.

The purpose of this article is to describe what pattern search methods

are and why they work. Much of our past work on pattern search meth-

ods was guided by a desire to unify a variety of existing algorithms and

provide them with a common convergence theory. Unfortunately, the

unification of this broad class of algorithms requires a technical frame-

work that obscures the features that distinguish pattern search algorithms

and make them work. We hope here to give a clearer explanation of

these ideas. Space does not allow us to do justice to the history of these

methods and all the work relating to them; this will be the subject of a

lengthier review elsewhere; for a historical perspective, see [17].
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2 A Simple Example of Pattern
Search

We begin our discussion with a simple instance

of a pattern search algorithm for unconstrained

minimization: minimize f (x). At iteration k, we

have an iterate x
k
˛ IR

n
and a step-length param-

eter D
k

> 0. Let e
i
, i = 1, …, n, denote the stan-

dard unit basis vectors. We successively look at

the points x
+

= x
k

± D
k

e
i
, i = 1, …, n, until we

find x
+

for which f (x
+
) < f (x

k
). Fig. 1 illustrates

the set of points among which we search for x
+

for n = 2. This set of points is an instance of

what we call a pattern, from which pattern

search takes its name. If we find no x
+

such that

f (x
+
) < f (x

k
), then we reduce D

k
by a half and

continue; otherwise, we leave the step-length

parameter alone, setting D
k+1

= D
k

and x
k+1

= x
+
.

In the latter case we can also increase the step-

length parameter, say, by a factor of 2, if we feel

a longer step might be justified. We repeat the

iteration just described until D
k

is deemed suffi-

ciently small.

This simple example illustrates two attractive

features of pattern search algorithms:

• They can be extremely simple to specify

and implement. 

• No explicit estimate of the derivative nor

anything like a Taylor’s series appears in the

algorithm. This makes these algorithms

useful in situations where derivatives are

not available and finite-difference deriva-

tives are unreliable, such as when f (x) is

noisy.

These qualities have made pattern search algo-

rithms popular with users. Yet, despite their

seeming simplicity and heuristic nature and the

fact that they do not have explicit recourse to

the derivatives of f (x), pattern search algorithms

possess global convergence properties that are

almost as strong as those of comparable line-

search and trust-region algorithms. In this article

we will attempt to explain this perhaps surpris-

ing fact.

Before turning to the discussion of how this

can be, we note some further features of pattern

search which are manifest in this simple exam-

ple.

• We require only simple decrease in f (x). In

fact, we do not even need to know f (x) as a

numerical value, provided we can make the

assessment that f (x
+
) is an improvement on

f (x
k
).

• If we are lucky, we need only a single evalu-

ation of f (x) in any given iteration. Once

we find an x
+

for which f (x
+
) < f (x

+
), we

can accept it and proceed. On the other

hand, in the worst case we will look in

quite a few directions (2n, for this example)

before we try shorter steps. 

• The steps that are allowed are restricted in

direction and length. In this example, the

steps must lie parallel to the coordinate axes

and the length of any step has the form

D
0
/2

N
for some integer N.

This simple example also suggests that there is a

great deal of flexibility in pattern search algo-

rithms, depending on how one specifies the pat-

tern of points to be searched for the next iterate.

These features will be recurring themes in our

discussion.

3 The General Pattern Search
Algorithm

For simplicity, our discussion will focus primari-

ly on the case of unconstrained minimization,

minimize f (x).

We assume that f is continuously differentiable,

but that information about the gradient of f is

either unavailable or unreliable. Since the incep-

tion of pattern search methods, various tech-

niques have also been used to apply them to

solve the general nonlinear programming prob-

lem

minimize f (x) 

subject to c(x) 0

l x u.

More recently, pattern search methods specifical-

ly designed for constrained problems with an

attendant convergence theory have been devel-

oped in [6, 9, 8].

The form of a general pattern search algo-

rithm is quite simple and not all that different

from any other nonlinear minimization algo-

rithm: first, find a step s
k

from the current iterate

x
k
; second, determine if that step is acceptable;

and finally, update the critical components of

the algorithm. At iteration k pattern search

methods will consider steps in directions denot-

ed by d
k
. We require d

k
to be a column of D

k
,

where D
k

is an n x p
k

matrix (i.e., D
k

represents

the set of directions under consideration).

Generalized pattern search:

Given x
0

˛ IR
n
, f(x

0
), D

0
˛ IR

n x p
0, and D

0
> 0,

for k = 0, 1, … until done do {

1. Find a step s
k

= D
k

d
k

using the procedure

Exploratory_Moves D
k
, (D

k
).

2. If f (x
k

+ D
k

d
k
) < f(x

k
), then x

k+1
= x

k
+ D

k
d

k
;

otherwise, x
k+1

= x
k
.

3. Update (D
k
, D

k
)

}

In order to establish convergence results for

this class of algorithms, we will, by and by, place

additional conditions on D
k
, the step calculation

procedure Exploratory_Moves(), and the update

procedure Update(). The analysis reveals that we

do not need to explicitly define

Exploratory_Moves() or Update(); for the pur-

poses of ensuring convergence it suffices to spec-

ify conditions on the results they produce. We

refer the interested reader to [16] for specific

examples of Exploratory_Moves() and Update()
used for some of the more traditional pattern

search methods. 

4 Global Convergence Analysis

Here we will use global convergence of an opti-

mization algorithm to mean convergence to a

stationary point of at least one subsequence of

the sequence of iterates produced by the algo-

rithm. A slightly weaker assertion is 

this is equivalent to the previous property if the

iterates {x
k
} remain in a bounded set.

Classical analyses of such methods as steepest

descent and globalized Newton methods rely in

a fundamental way on f (x) to prove global

convergence. Moreover, the technical conditions

that make the proof of global convergence for

these algorithms possible, such as the Armijo-

Goldstein-Wolfe conditions for line-search

methods, are actually built into the specification

of gradient-based algorithms.

On the other hand, no such technical condi-

tions appear in the description of pattern search

algorithms (witness the example in §2). The phi-

losophy of pattern search algorithms (and direct

search methods in general) is best described by

Hooke and Jeeves [5]: 

Figure 1. A simple instance of pattern

search
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We use the phrase “direct search” to describe

sequential examination of trial solutions

involving comparison of each trial solution

with the “best” obtained up to that time

together with a strategy for determining (as a

function of earlier results) what the next trial

solution will be. The phrase implies our pref-

erence, based on experience, for straightfor-

ward search strategies which employ no tech-

niques of classical analysis except where there

is a demonstrable advantage in doing so
1
.

This passage captures the basic philosophy of the

original work on direct search algorithms: an

avoidance of the explicit use or approximation of

derivatives. Instead, the developers of the origi-

nal direct search algorithms relied on heuristics

to obtain what they considered promising search

directions.

Nonetheless, we can prove global convergence

results for pattern search methods, even though

this class of algorithms was not originally devel-

oped with convergence analysis in mind. The

analysis does ultimately rely on f(x); hence the

assumption that f is continuously differentiable.

But because pattern search methods do not

compute or approximate f(x), the relationship

between these algorithms and their convergence

analysis is less direct than that for gradient-based

algorithms. 

4.1 The Ingredients of Global

Convergence Analysis

We will now review the ideas that underlie the

global convergence analysis of line-search meth-

ods for unconstrained minimization in order to

compare them with those for pattern search. We

focus on line-search methods rather than trust-

region methods since the comparisons and con-

trasts with pattern search are simpler for line-

search methods.

In order to prove global convergence of a line-

search algorithm, at the very least one must

show that if the current iterate x
k

is not a sta-

tionary point, then the algorithm will eventually

find an iterate x
k+1

such that f (x
k+1

) < f (x
k
). This

unavoidably leads to the contemplation of the

gradient, since the gradient ensures that a direc-

tion of descent can be identified: if x
k

is not a

stationary point of f, then any direction within

90˚ of – f (x
k
) is a descent direction. For our

purposes, this will prove a crucial, if elementary,

observation: one does not need to know the neg-

ative gradient in order to improve f (x), one only

needs a direction of descent. Then, if one takes a

short enough step in that direction, one is guar-

anteed to find a point x
k+1

such that f (x
k
+1) <

f (x
k
).

However, descent is not sufficient to ensure

convergence: one must also rule out the possibil-

ity that the algorithm can simply grind to a halt,

converging to a point that is not a stationary

point. One begins by requiring at least one

search direction to be uniformly bounded away

from orthogonality with – f (x
k
). This ensures

that the sequence of iterates cannot degenerate

into steps along directions that become ever

more orthogonal to the gradient while produc-

ing an ever diminishing improvement in f (x).

This restriction on the search directions is still

not sufficient to prevent the iterates from con-

verging to points that are not stationary points.

This unhappy situation can occur in two ways.

First, there is the pathology depicted in Fig. 2.

The ellipse represents a level set of f (x), which in

this case is a convex quadratic. The steps taken

are too long relative to the amount of decrease

between successive iterates.

While the sequence of iterates {x
k
} produces a

strictly decreasing sequence of objective values

{f (x
k
)}, the sequence of iterates converges to two

nonstationary points. 

The other pathology, depicted in Fig. 3,

occurs when the amount of decrease between

successive iterates is too small relative to the

amount of decrease initially seen in the direction

from one iterate to the next. This time the steps

between successive iterates become excessively

short. This sequence converges to a single point

which again is not a stationary point.

These pathologies lead to the second standard

element of global convergence analysis: a mecha-

nism that controls the length of the step. Both

of the preceding pathologies can be avoided, for

instance, by requiring that the amount of

decrease in f(x) between successive iterates be

“sufficient,” where sufficient relates the amount

of decrease, the length of the step, and the gradi-

ent f (x). This is the purpose of the Armijo-

Goldstein-Wolfe conditions for line-search algo-

rithms: given a suitable descent direction d
k
, we

choose a step length D
k

> 0 such that for some

fixed a ˛ (0,1) and fixed b ˛ (a,1), x
k+1

= x
k

+

D
k
d

k
satisfies both 

f (x
k + 1

) f (x
k
) + aD

k
Df (x

k
)

T
d

k
(1)

and

f (x
k+1

)
T
d

k
b f (x

k
)

T
d

k
. (2)

The first condition precludes steps that are too

long; the second condition precludes steps that

are too short. 

5 How Pattern Search Does Its
Thing

We can summarize the devices that ensure the

global convergence of line-search methods for

unconstrained minimization as follows: 

1. The choice of a suitably good descent

direction.

2. Step-length control:

(a) a mechanism to avoid steps that are

too long, and

(b) a mechanism to avoid steps that are

too short, where long and short refer

to the sufficient decrease conditions

(1) and (2), respectively.

Figure 2: Decrease is too small relative to the

length of the step

Figure 3: Decrease is too small relative to the

norm of the gradient

1
It might strike the modern reader as odd that Hooke

and Jeeves would question the advantages of employ-

ing techniques of “classical analysis” — meaning cal-

culus — given the success of quasi-Newton algo-

rithms.  However, direct search methods appeared in

the late 1950s and early 1960s, a time at which deriv-

ative-based methods were not as efficient as today,

and no general convergence analysis existed for any

practical optimization algorithm, derivative-based or

not.  The Armijo-Goldstein-Wolfe conditions [1, 4,

19], which form the basis for designing and analyzing

what we now consider to be practical line-search

algorithms, were several years in the future; trust

region algorithms [14] were further still.
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These mechanisms, which are explicitly built

into line-search algorithms, all depend on infor-

mation about the gradient. However, pattern

search algorithms do not assume such informa-

tion, and thus do not and cannot enforce such

conditions. What, then, ensures the global con-

vergence of pattern search algorithms?

The answer resembles the classical arguments

for establishing the global convergence of line-

search methods, but necessarily with novel ele-

ments. As we shall see, pattern search algorithms

are globally convergent because:

1. At each iteration, they look in enough

directions to ensure that a suitably good

descent direction will ultimately be consid-

ered.

2. They possess a reasonable back-tracking

strategy that avoids unnecessarily short

steps.

3. They otherwise avoid unsuitable steps by

restricting the nature of the step allowed

between successive iterates, rather than by

placing requirements on the amount of

decrease realized between successive iter-

ates.

At the heart of the argument lies an unusual

twist: we relax the requirement of sufficient

decrease and require only simple decrease (f (x
k+1

)

< f (x
k
)), but we impose stronger conditions on

the form the step s
k

may take. Furthermore, this

trade-off is more than just a theoretical innova-

tion: in practice, it permits useful search strate-

gies that are precluded by the condition of suffi-

cient decrease.

5.1 Pattern Search as a Crypto-Gradient

Method

The analysis begins by demonstrating that a

search direction not too far from the negative

gradient is always available. This is accomplished

by considering a set of step directions D
k

suffi-

ciently rich that it necessarily includes at least

one acceptable descent direction. In the absence

of any estimate of – f (x
k
), pattern search algo-

rithms hedge against the fact that – f (x
k
) could

point in any direction.

For the example in §2 the set of directions D
k

is { ± e
i
, i = 1, …, n}, so the set of prospective

next iterates has the simple form {x
k

± D
k

e
i
, i =

1, …, n}. If a step s
k

= ± Dk e
i
producing simple

decrease on f (x
k
) is found, then x

k+1
= x

k
± Dk e

i
;

otherwise, reduce D
k

and try again. Other of the

original pattern search methods, such as the

method of Hooke and Jeeves [5] or coordinate

search [13], also include in D
k

the directions {±

e
i
, i = 1, …, n}.

The analysis in [16] allows for more general

conditions on the set of directions. In particular,

D
k

must contain a set of the form {± p
i
, i = 1,

…, n}, where p
1
, …, p

n
is any linearly independ-

ent set of vectors. One can allow this set to vary

with k, so long as one restricts attention to a

finite collection of such sets.

The discussion in [18] brought to our atten-

tion that even less is required: it suffices that the

set of directions D
k

contain a positive basis P
k

for IR
n

[7]. In terms of the theory of positive lin-

ear dependence [3], the positive span of a set of

vectors {a
1
,…,a

r
} is the cone

{a ˛ IR
n

| a = c
1
a

1
+ … + c

r
a

r
, c

i
0 for all i}.

The set {a
1
,…,a

r
} is called positively dependent

if one of the a
i
’s is a nonnegative combination of

the others; otherwise the set is positively inde-

pendent. A positive basis is a positively inde-

pendent set whose positive span is IR
n
, i.e., a set

of generators for a cone that happens to be a

vector space. A positive basis must contain at

least n+1 vectors and can contain no more than

2n vectors [3]; we refer to the former as minimal

and the latter as maximal; Fig. 4 demonstrates

examples of both for R
2
.

How do we know that at least one of the

directions in D
k

is not too orthogonal to the

direction of steepest descent, regardless of what

– f (x) might be? A proof by picture is given in

Fig. 5; see [7] for details. Consider the minimal

positive basis {(1,1)
T
, (1,-1)

T
, (-1,0)

T
} depicted

in Fig. 5 as directions emanating from x
k
. Notice

that the angles between these vectors are 90˚,

135˚, and 135˚. For any continuously differen-

tiable function f : IR
2 fi IR, if x

k
is not a station-

ary point, then – f (x
k
) can be no more than

67.5˚ from one of the vectors in the positive

basis, as shown in Fig. 5. Thus, including a posi-

tive basis P
k

in the set of directions D
k

guaran-

tees that we can approximate the negative gradi-

ent in a way that cannot be arbitrarily bad. This

is the first step towards establishing global con-

vergence.

5.2 The Underlying Lattice Structure

As it happens – as it was meant to happen – pat-

tern search methods are restricted in the nature

of the steps they take. This ultimately turns out

to be the reason pattern search methods can

avoid the pathologies illustrated in Fig. 2 and

Fig. 3 without enforcing a sufficient decrease

condition. 

Figure 4: Examples of a minimal and a maximal positive basis for R
2

Figure 5: A minimal positive basis for R
2

and the two worst cases for – f (x
k
)
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Let P
k

denote the set of candidates for the

next iterate (i.e., P
k

= x
k

+ D
k

D
k
, by abuse of

notation). We call P
k

the pattern, from which

pattern search takes its name. Several traditional

patterns are depicted in Fig. 6.

Though it does not appear to have been by

any conscious design on the part of the original

developers of pattern search algorithms, these

algorithms produce iterates that lie on a finitely

generated rational lattice, as indicated in Fig 6.

More precisely, there exists a set of generators g
1
,

…, g
m
, independent of k, such that any iterate x

k

can be written as 

(3)

where each c
i

k
is rational.

Note that this structural feature means that

the set of possible steps, and thus the set of pos-

sible iterates, is known in advance and is inde-

pendent of the actual objective f (x). This is in

obvious contrast to gradient-based methods.

Furthermore – and this is significant to the

convergence analysis of pattern search – by judi-

cious (but not especially restrictive) choice of the

factors by which D
k

can be increased or

decreased, we can establish the following 

behavior of these algorithms. Suppose the set 

{x | f (x) f (x
0
)} is bounded.  Given any D

*
> 0,

there exists a finite subset (that depends on D
*
)

of the lattice of all possible iterates such that x
k

must belong to this subset until D
k

< D
*
. That is,

there is only a finite number of distinct values x
k

can possibly have until such time as D
k

< D
*
.

This means that the only way to obtain an infi-

nite sequence of distinct x
k

is to reduce the step

length parameter D
k

infinitely often so that lim

inf
k fi D

k
= 0.

This also reveals another role played by the

parameter D
k
. Reducing D

k
increases the set of

candidate iterates by allowing us to search over a

finer subset of the rational lattice of all possible

iterates. This is shown in Fig. 6 and Fig. 7. In

these pictures, halving D
k

refines the grid over

which we are tacitly searching for a minimizer of

f (x), while halving the minimum length a step is

allowed to have.

5.3 Putting It All Together

We return to the general pattern search algo-

rithm:

Generalized pattern search:

Given x
0

˛ IR
n
, f(x

0
), D

0
˛ IR

n x p
0
, and D

0
>

0, for k = 0, 1, … until done do {Figure 6: Some possible patterns 

Figure 7: The same patterns on a refinement of the grid
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1. Find a step s
k

= D
k

d
k

using the procedure

Exploratory_Moves (D
k
, D

k
).

2. If f (x
k

+ D
k

d
k
) < f (x

k
), then x

k+1
= x

k
+ D

k

d
k
; otherwise, x

k+1
= x

k
.

3. Update (D
k
, D

k
)

}

The step s
k

returned by the

Exploratory_Moves() algorithm must satisfy

two simple conditions: 

1. The step returned must be an element of

D
k
D

k
.

2. The step s
k

must satisfy either f (x
k

+ s
k
) <

f (x
k
) or s

k
= 0.

Furthermore, s
k

may be 0 only if none of the

steps in D
k
P

k
yielded decrease on f (x

k
).

The first condition prevents arbitrary steps along

arbitrary directions; the second condition is a

back-tracking control mechanism that prevents

us from taking shorter steps unless it is truly

necessary.

As for the procedure Update() for D
k

and D
k
,

we are free to make modifications to D
k

before

the next iteration. Classical pattern search meth-

ods typically specify a single D = D
k

for all k.

Others make substantive changes in response to

the outcome of the exploratory moves. This is

just one of many options to consider when

designing a pattern search method, and it leads

to a great deal of flexibility in this class of algo-

rithms. There are conditions that must be satis-

fied to preserve the lattice structure, but these

are straightforward to satisfy in practice. The

interested reader is referred to [7], for a com-

plete discussion of the technical conditions, and

to [16], for a description of some traditional

choices. 

The rules for updating D
k

are also restricted

by the need to preserve the algebraic structure of

the possible iterates. Historically, the popular

choices have been to halve D
k

at unsuccessful

iterations, and to either leave D
k

alone at success-

ful iterations or possibly double it. The conver-

gence analysis leads to other possibilities: we can

rescale D
k

by Q ˛ {t w0,…, t wL}, where t is a

rational number, {w
0
,…,w

L
} are integers, L 2,

w
0

< 0 and w
L

0. This provides at least one

option for reducing D
k

when back-tracking is

called for, and at least one option that does not

reduce D
k
.

The proof of convergence now goes like this.

Suppose x
k

is not a stationary point of f (x).

Because at least one of the directions d
k

in P
k

is

necessarily a descent direction, we can always

find an acceptable step D
k
d

k
once we reduce D

k

sufficiently. Thus, we can always find x
k+1

with

f (x
k+1

) < f (x
k
) for k in some subsequence K.

Now, if lim inf
k fi || f (x

k
)|| 0, then for

some e > 0, || f (x
k
)|| > e for all k. Under this

assumption we can show that once D
k

is suffi-

ciently small relative to e, it will no longer be

reduced. This is so because one of the directions

d
k

in P
k

is sufficiently close to – f (x
k
) to be a

uniformly good descent direction, and || f (x
k
)||

is uniformly not too small, so we will have f (x
k

+

D
k
d

k
) < f (x

k
) without having to drive D

k
to zero.

However, if lim inf
k fi D

k
= D

*
> 0, then due

to the lattice structure of the iterates, there can

be only finitely many possible x
k
, contradicting

the fact that we have an infinite subsequence K

with f (x
k+1

) < f (x
k
) for all k ˛ K (assuming

{x|f (x) f(x
0
) is bounded). Hence 

lim inf
k fi || f (x

k
)|| = 0.

The correlation between the fineness of the

grid of possible iterates and the size of D
k

also

explains why long steps are not a problem. We

have argued above that if lim inf
k fi D

k
= 0,

then lim inf
k fi || f (x

k
)|| = 0. Now, unless 

lim inf
k fi D

k
= 0, there can be only a finite

number of distinct iterates, and hence only a

finite number of long steps (or any type of step,

for that matter). Thus even if an infinite number

of “bad” long steps are taken (i.e., steps that

decrease f (x) but that violate (1)), the mere fact

that there are infinitely many distinct iterates

means that lim inf
k fi D

k
= 0, and hence lim

inf
k fi || f (x

k
)|| = 0.

5.4 Observations

This analysis might suggest an interpretation of

pattern search as a search over successively finer

finite grids. If the finite set of candidates is

exhausted without finding a point that improves

f (x), then the grid is refined by reducing D
k

and

the process is repeated.

However, this interpretation is misleading

insofar as it suggests that pattern search algo-

rithms are exceedingly inefficient. In practice,

pattern search algorithms do not resort to

searching over all the points in increasingly fine

grids but instead behave more like a steepest

descent method. In this sense, the analysis does

not reflect the actual behavior of the algorithm.

This should not be entirely surprising since,

unlike gradient-based methods, the specification

of pattern search algorithms does not obviously

contain a mechanism designed to guarantee con-

vergence.

The situation is analogous to that of the sim-

plex method in linear programming. Once one

establishes that the simplex method cannot

cycle, the convergence of the algorithm follows

from the fact that there is only a finite number

of vertices that the simplex method can visit in

its search for a solution. This means that the

simplex method could and does have a theoreti-

cal worst-case complexity that is exponential,

but in practice the simplex method has proven

much more efficient than that.

Moreover, the actual behavior of pattern

search in any single iteration can be very differ-

ent than the proof of convergence might be

thought to suggest. The search can accept as the

next iterate any point in P
k

that satisfies the sim-

ple decrease condition f (x
k+1

) < f (x
k
). In particu-

lar, the algorithm does not necessarily need to

examine every point in D
k
P

k
; it need only do so

before deciding to reduce D
k
, which is the worst

case. 

In the best case, we may need only a single

evaluation of f (x) to find an acceptable step. In

contrast, in a forward-difference gradient-based

method one needs at least n+1 evaluations of

f (x) (in addition to f (x
k
)) to find a new iterate; n

additional values of f (x) to approximate f (x
k
)

and at least one more evaluation of f (x) to

decide whether or not to accept a new iterate. 

In order to make progress, pattern search

requires the eventual reduction of D
k
. The cost

of discovering the necessity of this step is one

evaluation of f (x) for each direction defined by

the positive basis P
k
. For a minimal positive

basis of n+1 elements, this cost is the same as

the cost of an unsuccessful quasi-Newton step

using a forward-difference approximation of the

gradient; n evaluations of f (x) to form the finite-

difference approximation to f (x
k
), and the

evaluation of f (x) at the rejected x
+
. On the

other hand, following an unsuccessful step in the

latter algorithm, one gets to reuse the gradient

approximation; it is not clear how best to reuse

information from unsuccessful iterations of pat-

tern search in subsequent iterations.

5.5 The Resulting Convergence Results

Let = {x | f (x) f (x
0
)}, and suppose f is C

1
on

a neighborhood of .

Theorem If is bounded, then the iterates pro-

duced by a pattern search algorithm satisfy

If, in addition, lim
k fi D

k
= 0 and we require

f (x
k+1

) < f (x
k

+ s
k
) for all s

k
˛ D

k
P

k
, the steps

associated with the positive basis, and the

columns of D
k

are bounded in norm uniformly

in k, then we have
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By way of comparison, we obtain the result

lim
k fi || f (x

k
)|| = 0 for line-search methods

without the assumption that is bounded [12].

However, we must also require sufficient

decrease between iterates according to (1)–(2),

rather than just simple decrease, that is, 

f (x
k+1

) < f (x
k
).

For trust-region methods, with the assump-

tion that f (x) is uniformly continuous (but

again, without the assumption that is bound-

ed), requiring only simple decrease f (x
k+1

) < f (x
k
)

suffices to prove that lim
k fi || f (x

k
)|| = 0, pro-

vided the approximation of the Hessian does not

grow too rapidly in norm [15]. With a sufficient

decrease condition, one obtains the stronger

result [11], lim
kfi || f (x

k
)|| = 0. However, for

either result f (x) is used in both the fraction

of Cauchy decrease condition on the step and

the update of the trust radius.

Thus, under the hypothesis that is bound-

ed, the global convergence results for pattern

search algorithms are as strong as those for gra-

dient-based methods. This might seem surpris-

ing, but it simply reflects just how little one

needs to establish global convergence. Pattern

search is sufficiently like steepest descent that it

works.

This leads to one caveat for users: like steepest

descent, pattern search methods are good at

improving an initial guess and finding a neigh-

borhood of a local solution, but fast local con-

vergence should not be expected. In general, one

can expect only a linear rate of local conver-

gence.

6 Concluding Remarks

We have tried to explain how and why pattern

search works while refraining from a detailed

description of the convergence analysis. Once

one understands the essential ideas, the proof of

global convergence is reasonably straightforward,

if sometimes tedious. Precisely because pattern

search methods have so little analytical informa-

tion explicitly built into them, it takes some

effort to extract an assurance that they actually

do work. However, as we have tried to indicate,

many of the ideas are familiar from standard

analysis of nonlinear programming algorithms.

The novelty lies in the restriction of the iterates

to a lattice, which allows us to relax the condi-

tions on accepting steps.

The ideas discussed here also appear in the

analysis of pattern search methods for constrained

minimization [6, 9, 8]. For readers who would

like to explore the connections between pattern

search methods and gradient-based algorithms in

greater detail, we particularly recommend [10]. 
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Farewell

Remarks 

by the

Outgoing

MPS Chair

I
n August 1998, my term as Chair of the

Mathematical Programming Society ended. I

confess to some relief and some nostalgia. It

is the greatest honor of my career to have

won election as Chair of the major professional

organization for my primary research interest, and

I have enjoyed the opportunity to make a differ-

ence. It has been a busy three years. My officers

and I have made some significant changes that will

benefit the Society, and Tom Liebling and his

Lausanne Organizing Committee put on a mag-

nificent Symposium during our watch. 

My successor, Jean-Philippe Vial, inherits a

financially sound society in the process of digesting

these changes, but he also inherits a society whose

membership has declined by about 10% over the

last three years. This problem was the result of an

oversight in the registration process for the

Lausanne meeting. Nonmembers were not offered

membership at a reduced rate. Please support the

upcoming membership drive by renewing your

membership. If you are not a member, then you

must be reading this on the MPS web site, and you

can join at this site.

We have made two major changes. In a move

that I believe is crucial to the continued health of

the MPS, we have changed publishers for the jour-

nals, MP A&B. The key to this change was our

desire to reduce the library subscription price of

the journals while keeping member subscription as

a membership benefit.

Many of you have told us of battles with cost

conscious librarians to keep our journals in your

libraries. The price will roughly halve next year.

Springer will publish the series A&B under the

same titles and with only a slightly modified cover

art. Our feeling is that allowing Springer to make a

slight change in the cover signals the changes with-

out leading to any confusion that might lead a

librarian to think that this is a new journal.

The second move is that SIAM is now handling

our member services. We are receiving more serv-

ices and more reliable services with no increase in

cost. For a while, it may not have seemed that way

because many renewals went awry. This happened

because many of you seemed not to have gotten

the cover letter with the ISI mailing of renewal

invoices, asking you to renew through SIAM. Still,

SIAM seems to have straightened out this prob-

lem, even though they had no hand in causing it.

In addition, the SIAM staff made a real effort to

make our directory accurate. 

Of course, we all knew that the previous direc-

tories were unusable, but I did not realize, until the

new directory came out and I saw the volume of

mail generated to correct errors, that ISI seems not

to have made changes to the directory even when

members notified them. I am confident that the

current directory is useful and that next year our

directory will be very accurate. We can help this

process by providing accurate e-mail addresses on

our renewal forms.

Elsewhere in this issue of OPTIMA, Jean-

Philippe Vial will write the column that signals the

beginning of his term. He will do a fine job, and he

will do it with his usual sense of style. Let us resolve

to help him all we can.

Finally, let me thank you again for the opportu-

nity to serve the MPS in this capacity, and let me

also thank the Council and the Executive

Committee chaired heroically by Steve Wright for

being partners this term. Vice-Chairs Jan Karel

Lenstra and Jean-Philippe Vial, as well as Treasurer

Clyde Monma were all I could have wished and

more.

–JOHN DENNIS
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W
hen I started to learn optimiza-

tion and OR, I was motivated

by the belief that quantitative

decision-making in business

and organizations was a field full of promise. The

belief was naive, or at least not based on proper

information. The decades that followed did not

fulfill these great expectations. Our field certainly

has shown much vitality and creativity and some

spectacular applications were achieved, but we

must also acknowledge certain failures: unrealistic

models, insufficient databases, lack of appropriate

software, and drastic hardware limitations. As a

result, the business community developed much

skepticism about our profession. Optimization

and OR requirements diminished or disappeared

from MBA curricula at many institutions.

Those bad times seem to be over. I am happy

to be starting my duties of Chair at a time of

bright prospects for our profession. It is com-

monplace to credit the hardware revolution as a

major cause, but in addition we should note that

algorithms progressed at an even greater rate. A

third factor may, however, be the one that brings

us real support from the business community:

Spreadsheets and modeling languages nowadays

provide an environment in which the users can

think and express their problem. They free users

from most of the mathematical intricacies and

subtleties that we cherish and thereby encourage

them to explore new ways of thinking based on

models and optimization.

It should be one of our goals to regain our pop-

ularity in the business community through a new

approach to teaching and consulting. The poten-

tial for applications is enormous. In some areas,

decision-makers have no other alternative than

the best methodology we can provide. This is cer-

tainly true of combinatorial problems that are so

easy to formulate and so difficult to solve. But I

also have in mind some strategic issues, such as

measuring the economic impact of an effort to

reduce greenhouse gas emission, estimating traffic

congestion, or evaluating oligopolistic situations

in a deregulated world. In these examples, the

concept of equilibrium is probably the only one

that gives a grasp to the analysis, though comput-

ing equilibria efficiently still remains a challenge

in many instances.

Equally important for the future of our Society

is our ability to promote new applications in

engineering. As our former chair pointed out

three years ago, engineers often ignore the avail-

ability of powerful optimization tools that would

improve the design and the control of engineer-

ing systems. Optimization is still not fully part of

the engineering culture, even though the mini-

mum energy principle is so basic and

omnipresent in physics. The failure may be due

to insufficient performance of nonlinear solvers

in the past. It may also be that engineers are more

interested in the design of reliable and robust sys-

tems than in obtaining the ultimate with respect

to some criterion. We should publicize optimiza-

tion not as the way to get “the” solution, but

rather as an intelligent simulation tool.

Optimization often leads to novel and sometimes

surprising solutions that contribute to a better

knowledge and mastering of engineering systems.

The new field of robust optimization also offers

great opportunities.

Having a positive attitude towards applications

does not mean that we should neglect the

research-oriented character of our Society.

Development of new theories and new algo-

rithms is essential to continued vitality of the

field, and remains the primary goal of the

Society’s communications media, in particular,

our journals and symposia. Although most of us

are not practitioners, making optimization a

more and more operational tool should also

become our concern. To maintain a proper bal-

ance between those two facets of our activity is

our challenge. We may be helped in this mission

by cooperation with sister societies SIAM,

INFORMS, IFORS, which have related but dif-

ferent foci.

The previous team initiated some major man-

agement innovations, including a new publisher

for Mathematical Programming with a lower

institutional subscription rate, and a new mem-

bership services provider. The change of publish-

ers to Springer will take effect next January, and

everyone should feel responsible for making their

own organization’s library aware of the new lower

rate and encouraging them to subscribe.

Electronic distribution is also part of the new

publisher’s program. Membership services have

been provided by the SIAM office since the start

of 1998. They have been working hard to update

the data base of members (which, unfortunately,

had not been maintained well for some years) and

to enhance our Internet presence. Electronic

searching of the database is now possible through

the MPS web site (http://www.mathprog.org/).

In fact, most of your contacts with MPS, includ-

ing correcting your membership information,

renewing membership, pursuing OPTIMA

online, and gathering information on MPS prizes

and upcoming symposia, can be performed

through the web site.

The election took place this year and brought

in a new council. Steve Wright

(wright@mcs.anl.gov) continues to hold the

appointed post of Executive Committee Chair,

while the Publications Committee continues to

be chaired by Bob Bixby. Our immediate task is

to achieve larger diffusion of our journal and to

increase membership. Above all, we should main-

tain the unique character of the Society, most

notably its high scientific level and its genuine

international flavor. We are particularly looking

forward to the meeting in Atlanta in the year

2000, and the Search Committee is actively look-

ing for an attractive and exciting place in 2003.

Please contact me (at chair@mathprog.org or

jean-philippe.vial@hec.unige.ch), Steve Wright, or

the Executive Committee (at xcom@mathprog.org)

with any comments on Society business. The low

periodicity of Society gatherings favors their qual-

ity, but unfortunately, it gives us limited oppor-

tunities to exchange views on MPS. Electronic

mail partially compensates for this lack of per-

sonal contact, so please don’t hesitate to use it and

let us know what you think.

–JEAN-PHILLIPPE VIAL

University of Geneva, 102 Bd Carl Vogt, 

CH 1211 Geneva 4, Switzerland; 

Office: +41 22 705 81 24, 

Fax: +41 22 705 81 04; 

e-mail: jean-philippe.vial@hec.unige.ch

The New MPS Chair
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þ International Conference on Nonlinear Programming and Variational Inequalities
December 15-18, 1998, Hong Kong
URL: http://www.cityu.edu.hk/ma/conference/icnpvi/icnpvi.html

þ DIMACS Conference on Semidefinite Programming and Large Scale Discrete Optimization
January 7-9, 1999, Princeton University
URL: http://dimacs.rutgers.edu/Workshops/SemidefiniteProg/index.html

þ DIMACS Conference on Algorithm Engineering and Experimentation
January 15-16, 1999, Baltimore, MD
URL: http://dimacs.rutgers.edu/Workshops/Algorithm/

þTenth Annual ACM-SIAM Symposium on Discrete Algorithms
January 17-19, 1999, Baltimore, Maryland
URL: http://www.siam.org/meetings/da99/

þ DIMACS Conference on Large Scale Discrete Optimization in Manufacturing and Transportation
February 8-10, 1999, DIMACS Center Rutgers

þ DIMACS Conference on Mobile Networks and Computing
March 24-26, 1999, DIMACS Center Rutgers
URL: http://dimacs.rutgers.edu/Workshops/Mobile/index.html

þ INFORMS National Meeting
May 2-5, 1999, Cincinnati, KY
URL: http://www.cba.uc.edu/dept/qa/cinforms/

þ Sixth SIAM Conference on Optimization
May 10-12, 1999, Atlanta, GA
URL: http://www.siam.org/meetings/op99/index.htm

þ 1999 SIAM Annual Meeting
May 12-15 1999, Atlanta, GA
URL: http://www.siam.org/meetings/an99/index.htm

þ Workshop on Continuous Optimization
June 21-26, 1999, Rio de Janeiro
URL: http://www.impa.br/~opt/

þ Fourth International Conference on Industrial and Applied Mathematics
July 5-9, 1999, Edinburgh, Scotland
URL: http://www.ma.hw.ac.uk/iciam99/

þ 19th IFIP TC7 Conference on System Modelling and Optimization
July 12-16, 1999, Cambridge, England
URL: http://www.damtp.cam.ac.uk/user/na/tc7con

Conference Calendar

Call for Papers

Seventh Conference on Integer
Programming and Combinatorial
Optimization 

IPCO ‘99 
June 9-11, 1999 
TU Graz, Graz, Austria

Conference Approach
This meeting, the seventh in the

series of IPCO conferences held every

year in which no MPS International

Symposium takes place, is a forum

for researchers and practitioners

working on various aspects of integer

programming and combinatorial

optimization. The aim is to present

recent developments in theory, com-

putation, and applications of integer

programming and combinatorial

optimization. Topics include, but are

not limited to: polyhedral combina-

torics; integer programming; cutting

planes; branch and bound; geometry

of numbers; semidefinite relaxations;

matroids and submodular functions;

computational complexity; graph and

network algorithms; approximation

algorithms; on-line algorithms; and

scheduling theory and algorithms. 

In all these areas, we welcome struc-

tural and algorithmic results, reveal-

ing computational studies, and novel

applications of these techniques to

practical problems. The algorithms

studied may be sequential or parallel,

deterministic or randomized. 

During the three days, approximately

36 papers will be presented in a series

of sequential (non-parallel) sessions.

Each lecture will be 30 minutes long.

The Program Committee will select

the papers to be presented on the

basis of extended abstracts to be sub-

mitted as described below. 

The proceedings of the conference

will be published in the Springer

Lecture Notes in Computer Science

series and will contain full texts of all

presented papers. Copies will be pro-

vided to all participants at registration

time. 

Paper Submission
An extended abstract (up to 10 pages)

must be submitted by November 15,

1998. Electronic submissions (in

PostScript) are strongly encouraged.

Please refer to the Conference web

site for further submission instruc-

tions. 
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If an electronic submission is not

possible, submit eight copies by reg-

ular mail by November 1, 1998. Your

submission must include author’s

name, affiliation, and e-mail address. 

Authors will be notified of accept-

ance or rejection by January 20,

1999. The final full version of the

accepted paper, for inclusion in the

conference proceedings, is due by

March 7, 1999. 

Contact Address 
Gerhard J. Woeginger, Department

of Mathematics, TU Graz,

Steyrergasse 30, A-8010 Graz 

AUSTRIA.  

Fax: (0043) 316 873 5369; 

E-mail: ipco99@opt.math.tu-

graz.ac.at; 

URL: http://www.opt.math.tu-

graz.ac.at/ipco99.

Program Committee 
Chair: Gerard P. Cornuejols

(Carnegie Mellon University); Rainer

E. Burkard (TU Graz); Ravi Kannan

(Yale University); Rolf H. Moehring

(TU Berlin); Manfred Padberg (New

York University); David B. Shmoys

(Cornell University); Paolo Toth

(University of Bologna); and

Gerhard J. Woeginger (TU Graz). 

Important Dates
Extended abstracts due: November 1,

1998 (hard copy), November 15,

1998 (electronic); Authors notified:

January 20, 1999; Final versions

received: March 7, 1999; IPCO ‘99

Graz: June 9-11, 1999 

First Announcement 

6th Twente Workshop on Graphs and
Combinatorial Optimization 
26 - 28 May, 1999 
University of Twente Enschede,The
Netherlands 
The Twente Workshop on Graphs and

Combinatorial Optimization is organized bien-

nially at the Faculty of Mathematical Sciences at

the University of Twente. Topics are: graph theo-

ry and discrete algorithms (both deterministic

and random) and their applications in opera-

tions research and computer science. 

We try to keep a ‘workshop atmosphere’ as

much as possible, and so far have succeeded in

scheduling no more than two presentations in

parallel. We also try to keep the costs as low as

possible in order to make the workshop particu-

larly accessible to young researchers. 

Prospective speakers are asked to submit an

extended abstract of their representation, which

will be refereed by a program committee. Your

extended abstract should be at least three but

not more than four pages and should reach the

organizers before March 12, 1999. 

The accepted extended abstracts will be collected

into a conference volume available at the work-

shop and published in a volume of Electronical

Notes in Discrete Mathematics (ENDM). 

The external program committee members

include: J.A. Bondy (Lyon); R.H. Möhring

(Berlin); R.E. Burkard (Graz); B. Reed (Paris);

W.J. Jackson (London); R. Schrader (Cologne);

F. Maffioli (Milano); and C. Thomassen

(Copenhagen). 

A normally refereed special issue of Discrete

Applied Mathematics will be devoted to the pro-

ceedings of the workshop. 

If you are interested in participating in the 6th

Twente Workshop, please pre-register now infor-

mally. Give your complete postal as well as your

e-mail address and indicate whether you would

like to give a presentation (ca. 30 min.). If you

know the subject and/or title of your presenta-

tion, please include that also. You should receive

a definite registration form and more detailed

information by December 1998. 

Further information on the workshop will be

available at the web site

(http://www.math.utwente.nl/~tw6)

–H.J. BROERSMA, U. FAIGLE, C. HOEDE, J.L. HURINK 

Faculty of Mathematical Sciences, 

University of Twente, P.O. Box 217, 

7500 AE Enschede, The Netherlands 

(e-mail: tw6@math.utwente.nl) 

First
Announcement
& Call for
Papers

Fourth Workshop on Models and
Algorithms for Planning and
Scheduling Problems
June 14-18, 1999

MAPSP ‘99
Following three successful work-

shops at Lake Como, Italy, in

1993, in Wernigerode, Germany,

in 1995, and in Cambridge,

England, in 1997, the Fourth

Workshop on Models and

Algorithms for Planning and

Scheduling Problems is to be held

in Renesse, The Netherlands, June

14-18, 1999. The conference

hotel, ‘De Zeeuwsche Stromen,’ is

located in the dunes of Renesse, a

beach resort in the province of

Zeeland. 

The workshop aims to provide a

forum for scientific exchange and

cooperation in the field of plan-

ning, scheduling, and related areas.

To maintain the informality of the

previous workshops and to encour-

age discussion and cooperation,

there will be a limit of 100 partici-

pants and a single stream of pre-

sentations. 

Contributions on any aspect of

scheduling and related fields are

welcome. 

Conference Organizers
Emile Aarts, Philips Research

Laboratories, Eindhoven; Han

Hoogeveen, Eindhoven University

of Technology; Cor Hurkens,

Eindhoven University of

Technology; Jan Karel Lenstra,

Eindhoven University of

Technology; Leen Stougie,

Eindhoven University of

Technology; and Steef van de Velde,

Erasmus University, Rotterdam. 

Invited Speakers
Michel Goemans, CORE, Louvain-

la-Neuve, Belgium; Martin

Grötschel, ZIB, Berlin, Germany;

Michael Pinedo, New York

University, New York, USA; Lex

Schrijver, CWI, Amsterdam, The

Netherlands; Eric Taillard, IDSIA,
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Addendum to the 
Book Review from
OPTIMA NO57

Theory and Algorithms for
Linear Optimization: An
Interior Point Approach

by C. Roos, T. Terlaky and 

J.-Ph. Vial

Wiley, Chichester, 1997

ISBN 0-471-95676

Even though the book was altogether

a pleasure to read, I complained in

this review that “the most prominent

topic not addressed is infeasible point

methods.” 

I would like to add that while this

is true formally, the authors spend a

big section of the book on the skew-

symmetric model, which is one possi-

bility to avoid having a feasible interi-

or point to start with.

From a practical point of view, it is

argued that the slightly larger skew-

symmetric model is computationally

not significantly more expensive than

standard feasible methods, but it

enjoys additional theoretical proper-

ties.

In view of all this, my above com-

plaint is unjustified, and I would like

to add that the book in fact handles

the issue of starting points for IP

quite elegantly through the extended

skew-symmetric model.

-FRANZ RENDL

Gröbner Bases and Convex
Polytopes

by Bernd Sturmfels

University Lecture Series Vol. 8,

American Mathematical Society

Providence RI, 1995

ISBN 0-8218-0487-1

This book is a state-of-the-art

account of the rich interplay between

the combinatorics and geometry of

convex polytopes and computational

commutative algebra, via the tool of

Gröbner bases.  It is an essential intro-

duction for those who wish to per-

form research in this fast developing,

interdisciplinary field.  For the math

programmer, this book could be

viewed as an exposition of the inter-

actions between integer program-

ming and Gröbner bases.

Gröbner bases of polynomial ideals

are special generating sets that depend

on certain cost vectors.  The discovery

of an algorithm for their computation

in 1965 by Buchberger catapulted

Gröbner bases into a central role in

computational commutative algebra

and algebraic geometry.  (Buchberger

named them after his thesis advisor,

Wolfgang Gröbner.)   An implemen-

tation can be found in any of the

major computer algebra packages –

Macaulay, Reduce, Singular, CoCoA,

Maple and Mathematica, to name a

few.

The book assumes a working

knowledge of the basics of Gröbner

bases, polyhedral theory and linear

programming. The link between

polytopes and algebra is made via a

special class of ideals called toric ideals

which are prime ideals generated by

differences of monomials. The mate-

rial is organized into fourteen chap-

ters, each of which is followed by

exercises (some are in fact research

projects) as well as brief historical and

bibliographic notes. A number of

open problems are posed throughout

the book, and the reader is quickly

brought from basic definitions to the

forefront of current research. There is

a great deal of emphasis on computa-

tional issues, as is evident from the

many algorithms and examples

included in the book. Many of these

computations challenge the ability of

current computer algebra packages

(and the user’s imagination and inge-

nuity). 

The first three chapters treat gener-

al polynomial ideals and introduce

most of the tools used in this book.

The highlights are the notions of uni-

versal Gröbner bases, weight vectors,

state polytopes and Gröbner fans. As

seen later, these notions play a crucial

role in integer programming. The

treatment is custom tailored to the

purposes of this book and unique in

that it differs from usual presentations

of this material. A universal Gröbner

basis of an ideal I is a finite subset of

the ideal that is a Gröbner basis of I

with respect to all weight (cost) vec-

tors. The distinct Gröbner bases of I

are in bijection with the vertices of a

state polytope of I. The normal fan of

a state polytope is the Gröbner fan of

I. Chapter 3 presents algorithms for

computing state polytopes, Gröbner

fans and universal Gröbner bases. 

Chapters 4-9 form the heart of the

book and are devoted to toric ideals.

In Chapter 4, the reader is introduced

to toric ideals, their algebraic proper-

ties and complexity results for their

Gröbner bases. Given a matrix A ˛

Z
d x n

of rank d the toric ideal of A is

the ideal generated by all polynomials

(binomials) of the form x
1

u1x
2

u2 · x
n

un

– x
1

v1x
2

v2 · x
n

vn where u,v ˛ N
n
and Au

= Av. A construction of Graver

(1975) provides a useful universal

Gröbner basis for a toric ideal called

the Graver basis. 

Chapter 5 describes three natural

problems that can be associated to the

linear map p : N
n fi N

d
such that x

a A
x

and its fibers p-1
(b). (The

matrix A is assumed to be in N
d x n of

rank d where N is the set of non-neg-

ative integers.) The first is that of enu-

merating p-1
(b) = x ˛ N

n
: A

x
= b which

amounts to finding all non-negative

integer solutions to a system of linear

equations. The second is that of ran-

domly generating an element of p-

1
(b), or sampling, and the last is to

solve the integer program minimize c

· x : x ˛ p -1
(b). It is shown how all

three of these problems can be solved

using the toric ideal of A and its

Gröbner bases. In particular, it is

shown that the Gröbner basis of the

toric ideal of A with respect to the

cost vector c is the unique minimal

test set for the family of integer pro-

grams minimize c · x : x ˛ p -1
(b)

obtained by varying b.

Chapter 6 treats the case where A

has only one row, which amounts to

studying knapsack problems. In this

case, the elements of the Graver basis

are primitive partition identities.

The geometry of the universal

Gröbner basis of a toric ideal is dis-

cussed in Chapter 7. It is shown that

the universal Gröbner basis is precise-

ly the set of all edge directions in the

convex hulls of the fibers p-1
(b) as b
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varies. The effect of varying the cost

function c in the integer programs

minimize c · x : x ˛ p -1
(b) (b varies)

while keeping A fixed, is completely

captured by the Gröbner fan of the

toric ideal of A, making the state poly-

tope of a toric ideal a model for sensi-

tivity in integer programming.

Algorithms for computing all of these

entities are provided.

Chapter 8 treats the regular trian-

gulations of the point configuration

A, given by the columns of A. These

are simplicial complexes on A that

depend again on cost vectors. The

author shows that there is a many-one

onto map from the set of all Gröbner

bases of the toric ideal of A and the

regular triangulations of A. Regular

triangulations of A are in fact the

analogs in linear programming of

Gröbner bases in integer program-

ming. If D
c

denotes the regular trian-

gulation of A induced by the cost

vector c, then the maximal simplices

in D
c

are precisely the optimal LP

bases of the family of linear programs

minimize {c · x : Ax = b, x 0} as b

varies. This approach allows a natural

view of integer programming as an

arithmetic refinement of linear pro-

gramming. 

Many of the theoretical notions

from the previous chapters are illus-

trated in Chapter 9 using the node-

edge incidence matrices of complete

graphs (b-matching problems in inte-

ger programming).

The last five chapters of the book

deal with advanced topics. Chapter

10 generalizes the notion of initial

ideals of toric ideals to A-graded alge-

bras. This amounts to abstract integer

programming where one is allowed to

declare a unique random point in

each fiber as being optimal as long as

the optimal points form an order ideal

in N
n
. Chapter 11 discusses the role of

toric ideals in canonical subalgebra

bases. Chapter 12 treats certain

advanced computational aspects of

toric ideals that employ tools from

algebra. In particular, localizations of

initial ideals (of a toric ideal) are relat-

ed to group relaxations of integer pro-

grams. Toric ideals as defined in this

book are related to those found usual-

ly in the algebraic geometry literature,

in Chapter 13. The book concludes in

Chapter 14 with three sophisticated

point configurations and properties of

their toric ideals.

- REKHA THOMAS

Local Search in
Combinatorial
Optimization

Edited by Emile Aarts and 

Jan Karel Lenstra

Wiley, Chichester

ISBN 0-4719-4822-5

“Local Search in Combinatorial

Optimization” is the first book I know

of that covers under one head many of

the interesting aspects of this topic in

considerable depth and breadth. At

the same time, it finds a fair balance

between general theory, methodolo-

gies, and applications. The book con-

sists of 13 chapters altogether, each

written by leading experts of the

respective theme. Fortunately, it is not

simply a collection of rather unrelated

articles. Due to the editors’ editorial

experience, their knowledge of the

field, their apparent effort in prepar-

ing this book, and their careful choice

of both the topics and the authors, a

rather unique and mostly up-to-date

source of theoretical results, different

viewpoints, and empirical observa-

tions came into being.

Only a formal indication of the

interplay between the different chap-

ters is the fair amount of cross refer-

ences, the common list of references

at the end, as well as the joint author

and subject indexes. I have followed

with great excitement the sometimes

different historical perception of dif-

ferent authors and especially the more

or less implicit dispute between them,

e.g., between the “advertisers” of some

methodology like (artificial) neural

networks and the potential users of it.

This brings me to one of the big plus-

es of the book at hand. Without any

prejudice (but with some humor), the

editors gave room for the description

and thorough discussion of algorith-

mic paradigms which caused only

some years ago a great irritation

between, say, some “pure” combinato-

rial optimizers on the one side and

engineers, practitioners, or scientists

from the artificial intelligence com-

munity on the other side. In fact, the

world of local search has changed dra-

matically in the last decade and Aarts

and Lenstra’s book is a tribute to this

development. For one thing, incredi-

ble changes in computer technology

facilitated testing many algorithmic

variants and parameter settings on

several large problem instances. On

the other hand, the development and

the recognition of the importance of

new algorithmic concepts like simu-

lated annealing, tabu search, and

genetic algorithms have changed the

landscape significantly. Local search is

no longer synonymous with iterative

improvement. It is part of the main

intention of the editors and authors of

this book to present, review, and dis-

cuss the current state and the mathe-

matical foundation of these relatively

new concepts, as well as their useful-

ness for solving typical combinatorial

problems.

The book is organized in three

parts: the complexity of finding local-

ly optimal solutions, algorithmic con-

cepts to compute local optima that are

as good as possible, and the applica-

tion and refinement of local search

methods to diverse combinatorial

optimization problems. An introduc-

tory chapter written by the editors

complements the three parts. It gives a

first overview of the scene and lays the

notational foundation for the rest of

the book. However, these suggestions

are not always taken up in the subse-

quent chapters.

The complexity of finding locally

optimal solutions is still not known

for quite a few combinatorial prob-

lems and associated neighborhoods.

In response to this fact, Johnson,

Papadimitriou, and Yannakakis intro-

duced in 1988 the complexity class

PLS and the concept of a PLS-reduc-

tion that relates the difficulty of find-

ing local optima between different

problems. The second chapter by

Mihalis Yannakakis is at the same

time a brilliant, pleasant-to-read

introduction to, and a rather up-to-

date, in-depth survey of the complex-

ity class PLS and PLS-complete prob-

lems. In particular, he proves a gener-

ic problem to be PLS-complete and

presents then several illuminating

PLS-reductions to popular problems

like the graph partitioning problem

under the Kernighan-Lin or the swap

neighborhood.

Yannakakis’ chapter on the compu-

tational complexity of finding a local

optimum by any means (not necessar-

ily by a local search algorithm) is fol-

lowed by a chapter on the worst- and

average-case complexity of a certain

class of algorithms, written by Craig

Tovey. In contrast to the previous

chapter, Tovey does not consider spe-

cific combinatorial problems and

associated neighborhoods, but rather

works in the abstract setting of graphs

reflecting (data-independent) neigh-

borhood functions. Consequently, the

algorithms are assumed to draw infor-

mation from the neighborhood graph

and from an evaluation oracle for the

objective function only. In essentially

this setting, the following main results

are reviewed and proven. For almost

all neighborhood functions, any algo-

rithm to find a local optimum must

examine at least a constant fraction of

the set of all feasible solutions, in the

worst case. In the average case, how-

ever, even the standard iterative

improvement algorithm visits at most

a polylogarithmic number of solu-

tions, as long as the degree of the

neighborhood graph is sufficiently

small. Note, however, that both the

lower bound on the worst-case per-

formance as well as the upper bound

on the average-case behavior live to a

good part from the freedom to choose

arbitrary objective functions. For

more structured functions, our

knowledge remains limited.

At this place it is perhaps suitable

to briefly remind the reader of Aarts

and Lenstra’s book of at least some

(uncovered) results that actually com-

plement some of the results, remarks,

or questions raised in the first three

chapters: the adjacency neighborhood

on the 0/1–polytope associated with a

linear combinatorial optimization

problem (LCOP) is the unique mini-

mal exact neighborhood for local

search (Savage 1976); the diameter of

any d–dimensional 0/1–polytope is at
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most d (Naddef 1989); if P is an NP-

hard LCOP and N is a neighborhood

function such that P ,N is in PLS,

then N cannot be exact, unless P =

NP (Grötschel & Lovász 1996,

Schulz, Weismantel & Ziegler 1995);

testing the optimality of a given solu-

tion is NP-hard, for any NP-hard

LCOP.

However, let us come back to the

contents of Aarts and Lenstra’s book.

Each of the Chapters 4 to 7 is devot-

ed to a certain algorithmic paradigm.

Chapter 4 is a relatively technical dis-

cussion of simulated annealing with a

clear emphasis on the stimulating

modeling of simulated annealing

algorithms by Markov chains. First,

the basics of the theory of Markov

chains are carefully introduced. Then,

the authors elaborate on the results on

the probabilistic convergence of simu-

lated annealing algorithms to the set

of optimal solutions. Practical issues

like the choice of the cooling sched-

ule, the design of parallel algorithms

together with the use of neural net-

work models, and the combination of

different approaches are covered as

well. Alain Hertz, Eric Taillard, and

Dominique de Werra survey tabu

search in a very concise manner in

Chapter 5. The technical details of

perhaps the most interesting mathe-

matical result on the probabilistic

convergence are only given in the

introductory section and the conclu-

sion. The main part of the text focus-

es on efficiency issues that are illus-

trated by a few selected examples. In

contrast to the two previous chapters,

the sixth chapter on genetic algo-

rithms contains a wealth of proofs. In

a truly remarkable, unusually person-

al style, Heinz Mühlenbein responds

to other, earlier explanations on why

and how genetic algorithms work. His

main message is to use mathematical

methods that were previously devel-

oped to explain phenomena in popu-

lation genetics. Eventually, we come

to perhaps the most controversial

technique, artificial neural networks.

Carsten Peterson and Bo Söderberg

garnish their introduction to this area

with quite a few examples and some

computational results. In any case, I

recommend also reading Section 7 of

Chapter 8 which helps to get the

results obtained by this method into a

better perspective.

Each of the six remaining chapters

studies the application of one or more

of the previously introduced algorith-

mic techniques to a specific class of

combinatorial optimization prob-

lems. David Johnson and Lyle

McGeoch investigate the traveling

salesman problem; in the broader

context of vehicle routing, Michel

Gendreau, Gilbert Laporte, and Jean-

Yves Potvin also consider all concepts

introduced in the second part of the

book, whereas extensions of edge

exchange neighborhoods are dis-

cussed by Gerard Kindervater and

Martin Savelsbergh; Edward

Anderson, Celia Glass, and Chris

Potts review local search algorithms in

the wide field of machine scheduling;

applications of simulated annealing,

tabu search, and genetic algorithms to

the different phases in VLSI layout are

discussed by Emile Aarts, Peter van

Laarhoven, C. Liu, and Peichen Pan;

finally, Iiro Honkala and Patric Öster-

gard describe the use of local search

methods to design good error-correct-

ing and covering codes. It would be

almost unfair to highlight any of these

chapters, as all of them are thorough-

ly and thoughtfully prepared.

However, three chapters deserve nev-

ertheless a short special mentioning.

First, the chapter on the TSP is a shin-

ing example of a carefully designed

comparison of the performance of dif-

ferent algorithmic techniques and

their implementations. Second, the

chapter on machine scheduling capti-

vates by its organization; the authors

first extract nicely the common fea-

tures from the several algorithmic

approaches before they actually start

considering particular scheduling

problems. Third, the really self-con-

tained chapter on VLSI layout is con-

vincing with its scholarly introduction

to both the area of layout problems

and the local search methods

employed to solve them.

I am pleased to report that the 512

pages which make up the book con-

tain only relatively few errors and

typos, and only a few of them are

annoying (wrong running times,

wrong dates, wrong variable names or

indices). Another nice and important

feature of this book is that although

the authors’ own contributions have

helped to shape the field in the last

decades, most chapters are not merely

a summary of the authors’ own

research. Still, some reader might miss

the (more detailed) discussion of one

or the other quite related topic like

Kalai’s bound on the diameter of

polytopes, Amenta and Ziegler’s

deformed products, abstract objective

functions, or test sets in integer pro-

gramming. However, as an editor, one

has to make a choice.

In summary, this book is a very

useful source for researchers and grad-

uate students of quite a range of fields.

It gives local search and especially the

modern concepts, at which some peo-

ple still smile, the right (mathemati-

cal) standing.

- ANDREAS S. SCHULZ

gallimaufry The editorial board has been very mobile lately, both in terms of addresses and activities.

• Karen Aardal is spending the fall at the Department of CAAM, Rice University.

• Sebastian Ceria has started a new company called Dash Optimization, Inc., but continues to hold

a position at Columbia University.

• Mary Beth Hribar moved to Seattle and is now working for Tera Computer Company. Her new

address appears on p.16.

• Robert Weismantel got a position as professor at the University of Magdeburg. His new address

appears on p.16 as well.

Deadline for the next issue of OPTIMA is November 30, 1998.

For the electronic version of OPTIMA, please see:

http://www.ise.ufl.edu/~optima/
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